NILPOTENT ACTION BY AN ELEMENTARY AMENABLE GROUP AND EULER CHARACTERISTIC

JONG BUM LEE AND CHAN-YOUNG PARK

Let X be a finite connected CW-complex, $\Gamma = \pi_1(X)$ its fundamental group, \widetilde{X} its universal covering space. Then Γ acts on \widetilde{X} by covering transformations and on the homology group $H_*(\widetilde{X})$. In this note we establish the following vanishing result for the Euler characteristic $\chi(X)$ of X.

THEOREM. If $\Gamma = \pi_1(X)$ contains a nontrivial, finite index, torsion free, elementary amenable subgroup A (i.e., Γ is elementary amenable and virtually torsion-free) which acts nilpotently on $H_*(\widetilde{X})$, then the Euler characteristic $\chi(X)$ of X vanishes.

In the Theorem above, A acts nilpotently on $M=H_*(\widetilde{X})$ means that there exists a finite filtration $0=M^{(0)}\subset M^{(1)}\subset \cdots \subset M^{(k-1)}\subset M^{(k)}=M$ by $\mathbb{Z}A$ -modules such that A acts trivially on the associated graded module $\mathrm{Gr}M=\{M^{(i)}/M^{(i-1)}\mid i=1,\cdots,k\}$. If X is finite and aspherical, then Γ is torsion-free and obviously Γ , and so any subgroup of Γ , acts nilpotently on $H_*(\widetilde{X})$. When X is finite and aspherical: Gottlieb [4] and Stallings [11] showed that if Γ has the nontrivial center then $\chi(X)=0$; Rosset [10] showed that if Γ contains a nontrivial normal Abelian subgroup then $\chi(X)=0$; Hillman and Linnell [5] showed that if Γ contains a nontrivial normal elementary amenable subgroup then $\chi(X)=0$; Cheeger, Gromov [1] and Eckmann [3] showed that if Γ is an amenable group then $\chi(X)=0$. The Theorem above is a variation of Eckmann's result [2] which states that if X is finite and if Γ contains a

Received December 10, 1994. Revised September 20, 1995.

¹⁹⁹¹ AMS Subject Classification: 57S25, 16S90, 20C07.

Key words and phrases: Nilpotent group action, elementary amenable group, Euler characteristic.

Supported in part by the Basic Science Research Institute Program, Ministry of Education, 1995, Project No. BSRI-95-1422 and BSRI-95-1409, and by TGRC-KOSEF.

nontrivial torsion-free normal Abelian subgroup which acts nilpotently on $H_*(\widetilde{X})$ then $\chi(X) = 0$. From the history of vanishing results for Euler characteristic, we can propose naturally the following problem.

QUESTION. If X is a finite complex and if $\pi_1(X)$ contains a non-trivial torsion-free normal (elementary) amenable subgroup which acts nilpotently on $H_*(\widetilde{X})$ then $\chi(X)$ vanishes.

The proof of the Theorem above is based on main results in [6] for group rings: since A is a torsion-free elementary amenable group, $\mathbb{C}A$ has a left quotient ring $D = (\mathbb{C}A \setminus \{0\})^{-1}\mathbb{C}A$. Using known results in the theory of rings of operators concerning von Neumann algebras we show that D has the "rank invariant" property for finitely generated free D-modules, i.e., all bases of such a module F consist of the same number of elements; this number is the rank of F over D, written $\mathrm{rk}_D F$. Using the assumption that A acts nilpotently on $H_*(\widetilde{X})$ we show also that $D \otimes_{\mathbb{C}A} H_*(\widetilde{X};\mathbb{C}) = 0$. If X is a finite CW-complex and if A is a finite index subgroup of $\pi_1(X)$ it follows that $\chi(X) = 0$.

By Theorem 1.4 of [6], $\mathbb{C}A$ is a domain; any nonzero element of $\mathbb{C}A$ is not a zero-divisor in $\mathbb{C}A$. By Theorem 1.3 of [6], $\mathbb{C}A$ has a left quotient ring which is a division ring D, i.e., $\mathbb{C}A$ is a subring of D, every nonzero element of $\mathbb{C}A$ is a unit in D, and every element of D is of the form $\alpha^{-1}\beta$ for some elements α and β of $\mathbb{C}A$ with $\alpha \neq 0$. Hence $D = (\mathbb{C}A \setminus \{0\})^{-1}\mathbb{C}A$ and D is a right flat $\mathbb{C}A$ -module.

PROPOSITION 1. D has the rank invariant property for finitely generated free D-modules.

Proof. Since D is a division ring, every D-module is, by definition, a vector space over D. It is well-known that any two bases of a vector space over a division ring have the same cardinality, and every vector space over a division ring is a free module. Hence D has the rank invariant property for finitely generated D-modules. \square

REMARK 2. From the fact that D is a localized ring $(\mathbb{C}A \setminus \{0\})^{-1}\mathbb{C}A$ and using known results in the theory of rings of operators concerning von Neumann algebras we can give an alternate proof that D has the rank invariant property.

By (3.5) of [10], we can embed D in a von Neumann regular ring $\widetilde{W}(A)$ in such a way that

- (a) $\widetilde{W}(A)$ is a ring of (densely defined) operators on the base the Hilbert space $\mathcal{H} := \ell_2(A)$,
- (b) $\widetilde{W}(A)$ has the rank invariant property, and
- (c) if \mathcal{I} is a principal ideal of $\widetilde{W}(A)$ then \mathcal{I} is generated by an idempotent element of the von Neumann algebra W(A) generated by A.

By the universal property of localization it is enough to show that if $\alpha \in \mathbb{C}A$, $\alpha \neq 0$ then α is invertible in $\widetilde{W}(A)$. Define the operators L_{α} and R_{α} , respectively, by $L_{\alpha}(h) = \alpha h$ and $R_{\alpha}(h) = h\alpha$ for all $h \in \mathcal{H}$. Let $\widetilde{W}(G) \cdot L_{\alpha} = \widetilde{W}(G) \cdot e$ for some idempotent $e \in W(G)$. Suppose $e \neq \mathrm{id}_{\mathcal{H}}$. Then there is $h \in \mathcal{H}$ such that $(\mathrm{id}_{\mathcal{H}} - e)(h) \neq 0$. Since $L_{\alpha} \in \widetilde{W}(G) \cdot e$, $L_{\alpha} = w \circ e$ for some $w \in \widetilde{W}(G)$, and hence $L_{\alpha} \circ (\mathrm{id}_{\mathcal{H}} - e) = w \circ e \circ (\mathrm{id}_{\mathcal{H}} - e) = w \circ (e - e^2) = 0$. However by Theorem 2 of [8]. $L_{\alpha} \circ (\mathrm{id}_{\mathcal{H}} - e)(h) \neq 0$, which is impossible. Thus $e = \mathrm{id}_{\mathcal{H}}, \widetilde{W}(G) = \widetilde{W}(G) \cdot L_{\alpha}$, and L_{α} has a left inverse in $\widetilde{W}(G)$. Similarly R_{α} has a right inverse in $\widetilde{W}(G)$. Thus D is embedded in the ring $\widetilde{W}(G)$ which has the rank invariant property. Hence D has the rank invariant property.

PROPOSITION 3. If N is a trivial CA-module then $D \otimes_{\mathbb{C}A} N = 0$.

Proof. Indeed, there is an element $a \neq 1$ in A; for any $n \in N$ and $d \in D$ we have

$$d \otimes n = d(a-1)^{-1} \otimes (a-1)n = 0. \quad \Box$$

PROPOSITION 4. The localized homology $D \otimes_{\mathbb{C}A} H_*(\widetilde{X};\mathbb{C})$ is 0.

Proof. We write $M = H_*(\widetilde{X}; \mathbb{C})$, a $\mathbb{C}\Gamma$ -module and hence a $\mathbb{C}A$ -module, and consider a filtration of M given by the nilpotent action of A so that A acts nilpotently on the associated graded module GrM. By Proposition 3, $D \otimes_{\mathbb{C}A} GrM = 0$. Since D is a flat $\mathbb{C}A$ -module this means $Gr(D \otimes_{\mathbb{C}A} M) = 0$ for the corresponding filtration of $D \otimes_{\mathbb{C}A} M$. The filtration beginning with 0 it follows that $D \otimes_{\mathbb{C}A} M = 0$. \square

Proof of Theorem. Let $\underline{C} = \{0 \to C_n \to \cdots \to C_1 \to C_0 \to 0\}$ be the cellular chain complex over \mathbb{C} of \widetilde{X} . It is a complex of free $\mathbb{C}\Gamma$ -modules with $\mathrm{rk}_{\mathbb{C}\Gamma}C_i = \alpha_i = \mathrm{number}$ of i-cells of X. (Note that $\mathbb{C}\Gamma$ has the rank invariant property, cf. [9].) Hence \underline{C} is a complex of free $\mathbb{C}A$ -modules with $\mathrm{rk}_{\mathbb{C}A}C_i = |\Gamma:A| \cdot \alpha_i$. From Proposition 4 and using again the flatness of D, we see that

$$0 = D \otimes_{\mathbb{C}A} H_{*}(\widetilde{X}; \mathbb{C}) = D \otimes_{\mathbb{C}A} H_{*}(\underline{C}) = H_{*}(D \otimes_{\mathbb{C}A} \underline{C}).$$

Thus $0 \to D \otimes_{\mathbb{C}A} C_n \to \cdots \to D \otimes_{\mathbb{C}A} C_1 \to D \otimes_{\mathbb{C}A} C_0 \to 0$ is an exact sequence of finitely generated free D-modules. This implies

$$(D \otimes_{\mathbb{C}A} C_0) \oplus (D \otimes_{\mathbb{C}A} C_2) \oplus \cdots \quad \cong \quad (D \otimes_{\mathbb{C}A} C_1) \oplus (D \otimes_{\mathbb{C}A} C_3) \oplus \cdots$$

and, since D has the rank invariant property, we have

$$0 = \sum_{i=0}^{n} (-1)^{i} \operatorname{rk}_{D}(D \otimes_{\mathbb{C}A} C_{i}) = \sum_{i=0}^{n} (-1)^{i} |\Gamma : A| \cdot \alpha_{i} \text{ or } \sum_{i=0}^{n} (-1)^{i} \alpha_{i} = 0.$$

I.e., the Euler characteristic $\chi(X)$ is 0, which proves the Theorem.

The cohomological dimension of a discrete group G, denoted cd(G), is defined by

$$cd(G) = \inf \{ n \mid \mathbb{Z} \text{ admits a projective resolution of length } n \}$$

= $\inf \{ n \mid H^i(G, -) \} = 0 \text{ for } i > n \}$
= $\sup \{ n \mid H^n(G, A) \neq 0 \text{ for some } G\text{-module } A \}.$

A group G is said to be of type FP if \mathbb{Z} admits a resolution

$$0 \to P_n \to \cdots \to P_0 \to \mathbb{Z} \to 0$$

of finite length such that the P_i are finitely generated projective $\mathbb{Z}G$ modules. We say that a group *virtually* has a given property if some
subgroup of finite index has that property. For example, $\operatorname{vcd}(G) = \operatorname{cd}(G_0)$ for some subgroup G_0 of G with finite index. If G is virtually
of type FP and G_0 is any finite index subgroup of G, then the Euler
characteristic $\chi(G)$ of G is defined by

$$\chi(G) = \frac{\chi(G_0)}{|G:G_0|},$$

where $\chi(G_0) = \sum (-1)^i \operatorname{rk}_{\mathbb{Z}} H^i(G_0, \mathbb{Z}).$

COROLLARY. Let X be a finite connected CW-complex, $\Gamma = \pi_1(X)$ an infinite elementary amenable group with finite virtual cohomological dimension, \widetilde{X} homotopic to an even-dimensional sphere S^{2k} . Then Γ is virtually of type FP and $\chi(\Gamma)=0$.

Proof. Recall that a nontrivial finite subgroup of $\Gamma = \pi_1(X)$ is isomorphic to \mathbb{Z}_2 , Γ is torsion-free or else Γ is isomorphic to $\Gamma' \rtimes \mathbb{Z}_2$ where Γ' is torsion-free. If $\operatorname{vcd}(\Gamma) < \infty$ then Γ is virtually of type FP, and so $\chi(\Gamma)$ is defined and $\chi(X) = \chi(\Gamma) \cdot \chi(\widetilde{X})$ ([7]). Note also that since $H_{2k}(\widetilde{X}) = \mathbb{Z}$, the kernel of the induced action homomorphism $\Gamma \to \operatorname{Aut}(H_{2k}(\widetilde{X})) = \operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_2$ has index at most 2 in Γ and acts nilpotently on $H_*(\widetilde{X})$. Hence Γ has a nontrivial torsion-free finite index elementary amenable subgroup which acts nilpotently on $H_*(\widetilde{X})$. By Theorem and by the fact that $\chi(\widetilde{X}) = 2$, we have $0 = \chi(X) = 2 \cdot \chi(\Gamma)$. Thus $\chi(\Gamma) = 0$. \square

References

- J. Cheeger and M. Gromov, L₂-cohomology and group cohomology, Topology 25 (1986), 189-215.
- B. Eckmann, Nilpotent group action and Euler characteristic, Lecture Note in Mathematics 1248 (1985), 120-123.
- 3. B. Eckmann, Amenable groups and Euler characteristic, Comment. Math. Helvetici 67 (1992), 383-393.
- 4. D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
- J. A. Hillman and P. A. Linnell, Elementary amenable groups of finite Hirsch length are locally-finite by virtually solvable, J. Austral. Math. Soc. 52 (1992), 237-241.
- P. H. Kropholler, P. A. Linnell and J. A. Moody, Applications of a new K-theoretic theorem to soluble group rings, Proc. Amer. Math. Soc. 104 (1988), 675-684.
- 7. J. B. Lee, Transformation groups on $S^n \times \mathbb{R}^m$, Topology and its Applications 53 (1993), 187-204.
- 8. P. A. Linnell, Zero divisors and group von Neumann algebras, Pacific J. Math. 149 (1991), 349-363.
- 9. S. M. Montgomery, Left and right inverses in group algebras, Bull. Amer. Math. Soc. 75 (1969), 539-540.
- S. Rosset, A vanishing theorem for Euler characteristics, Math. Z. 185 (1984), 211-215.
- J. R. Stallings, Centerless groups-an algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129-134.

Jong Bum Lee and Chan-Young Park

JONG BUM LEE

DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL 121-742, KOREA E-MAIL: JLEE@CCS.SOGANG.AC.KR

CHAN-YOUNG PARK

DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA

E-MAIL: CHNYPARK@BH.KYUNGPOOK.AC.KR