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A MEMORY TYPE BOUNDARY STABILIZATION FOR AN

EULER-BERNOULLI BEAM UNDER BOUNDARY OUTPUT

FEEDBACK CONTROL

Yong Han Kang, Jong Yeoul Park, and Jung Ae Kim

Abstract. In this paper, the memory type boundary stabilization for
an Euler-Bernoulli beam with one end fixed and control at the other
end is considered. We prove the existence of solutions using the Galerkin
method and then investigate the exponential stability of solutions by using
multiplier technique.

1. Introduction

In this paper, we consider the following Euler-Bernoulli beam with memory
which has one end fixed and control input at the other end:

ytt(x, t) + yxxxx(x, t)−

∫ t

0

κ(t− τ)yxxxx(x, τ)dτ + g(yt(x, t)) = 0,(1.1)

x ∈ (0, L), t ≥ 0,

y(0, t) = yx(0, t) = yxx(L, t) = 0, t ≥ 0,

yxxx(L, t)−

∫ t

0

κ(t− τ)yxxx(L, τ)dτ = u(t)− θ̃ sin t, t ≥ 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L),

yout(t) = yt(L, t), t ≥ 0,

where κ represents the kernel of memory term, g : R → R is a given function, θ̃
is a positive constant, u : R+ → R is the boundary control force applied at the
free end of the beam and yout(t) stands for the measured signal of the system
at time t. System (1.1) describes the transverse vibration of an extensible
beam clamped at x = 0 and supported at x = L by a control force. The
advantage of the adaptive stabilization is that stabilization and good control
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performance can be automatically achieved even in the presence of various
types of uncertainty. In this paper, we consider the stabilization of the system
(1.1). To this end, we design the following adaptive output feedback controller:

u(t) = h(t)yt(L, t) + θ(t) sin t, t ≥ 0,(1.2)

ht(t) = ry2t (L, t), h(0) = h0 > 0, t ≥ 0, r > 0,

θt(t) = yt(L, t) sin t, θ(0) = θ0, t ≥ 0,

where θ0 is the initial condition of the estimator.
Under this adaptive controller, the closed-loop system (1.1) becomes

ytt(x, t) + yxxxx(x, t) −

∫ t

0

κ(t− τ)yxxxx(x, τ)dτ + g(yt(x, t)) = 0,

(1.3)

x ∈ (0, L), t ≥ 0,

y(0, t) = yx(0, t) = yxx(L, t) = 0, t ≥ 0,

yxxx(L, t)−

∫ t

0

κ(t− τ)yxxx(L, τ)dτ = h(t)yt(L, t) + [θ(t) − θ̃] sin t, t ≥ 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L),

ht(t) = ry2t (L, t), h(0) = h0 > 0, t ≥ 0, r > 0,

θt(t) = yt(L, t) sin t, θ(0) = θ0.

The energy of the system (1.3) is given by

E(t) =
1

2

∫ t

0

(y2t (x, t) + y2xx(x, t))dx.

Ma [12, 13] studied the boundary stabilization for a nonlinear beam on elastic
bearings without memory and boundary output feedback control. The exis-
tence and uniform decay of solutions for an Euler-Bernoulli beam with memory
was consider by Park and Kim [15]. Also, the Euler-Bernoulli beam equation
with memory and boundary output feedback control was studied by Park, Kang
and Kim [14]; they proved the existence and exponential stability of solutions
for the following system:

ytt(x, t) + yxxxx(x, t)−

∫ t

0

κ(t− τ)yxxxx(x, τ)dτ + g(yt(x, t)) = 0,(1.4)

x ∈ (0, L), t ≥ 0,

y(0, t) = yx(0, t) = yxx(L, t) = 0, t ≥ 0,

yxxx(L, t)−

∫ t

0

κ(t− τ)yxxx(L, τ)dτ = h(t)yt(L, t), t ≥ 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L),

ht(t) = ry2t (L, t), h(0) = h0 > 0, t ≥ 0, r > 0.
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Conrad and Omër [3] proved the existence and uniform decay for a flexible
beam with a tip mass. The boundary stabilization and boundary controllability
for the beams were consider by authors [1, 2, 4-6, 9-11, 16, 17]. Guo and
Luo [8] studied the stabilization and parameter estimation for a flexible-beam
vibration with gain adaptive direct strain feedback control. Recently, Guo
and Guo [7] consider the adaptive stabilization for a Kirchhoff-type nonlinear
beam under boundary output feedback control. Motivated by [14] and some
idea in [7], we can obtain our main results. The objective of this paper is to
study the stabilization for a more general Euler-Bernoulli beam with memory
under boundary output feedback control. Our choice of boundary feedback
is motivated by the fact that boundary controls are easily implemented as the
need to act only on the boundary of the spatial domain. This paper is organized
as follows. In Section 2, using a constructive Galerkin approximation scheme,
we show the existence and uniqueness of the solution for the system (1.3). The
exponential decay that is dependent on the initial data is obtained in Section
3 by making use of the multiplier technique.

2. Existence result

In this section we prepare some notation and hypotheses which will be
needed in the proof of our result. Let L2(0, L) be the usual Hilbert space with
the inner product (·, ·) and the inner product induced norm ‖ · ‖. Throughout
this paper, we define V = {y ∈ H2(0, L) | y(0) = yx(0) = 0} equipped with the
norm ‖y‖V = ‖yxx‖, W = {y ∈ V ∩H4(0, L) | yxx(L) = 0} equipped with the

norm ‖y‖W = ‖yxx‖+ ‖yxxxx‖ and (u, v) =
∫ L

0
u(x)v(x)dx. From the Poincaré

inequality, it follows that ‖ ·‖V and ‖ ·‖W are equivalent to the standard norms
of H2(0, L) and H4(0, L), respectively. Now, we state the following hypotheses
which will be assumed in this paper.

(H1) For any y0 ∈ W, y1 ∈ V ,

yxxxx(x, 0) + g(y1) = 0, x ∈ (0, L),(2.1)

y(0, 0) = yx(0, 0) = yxx(L, 0) = 0,

yxxx(L, 0) = h0yt(L, 0).

(H2) Let g : R → R be a continuously differentiable function and there exists
a positive constant µ such that

(2.2) g(0) = 0, (g(r) − g(s))(r − s) ≥ µ|r − s|2, r, s ∈ R.

(H3) Let the function κ : R+ → R
+ be a positive and bounded C2-function

such that

(2.3) ℓ = 1−

∫ ∞

0

κ(r)dr > 0

and for some positive mi, i = 0, 1, 2

−m0κ(t) ≤ κt(t) ≤ −m1κ(t), ∀t ≥ 0,(2.4)
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0 ≤ κtt(t) ≤ m2κ(t), ∀t ≥ 0.

Considering the above hypotheses we have the following existence result by
Galerkin method.

Theorem 2.1. Let y0 ∈ W , y1 ∈ V. Suppose that (H1), (H2) and (H3) are

satisfied. Then the problem (1.3) has a unique solution y in the sense that for

any time T > 0,

y ∈ L∞(0, T ;W ), yt ∈ L∞(0, T ;V ), ytt ∈ L∞(0, T ;L2(0, L)),

(2.5)

h ∈ C1[0, T ], θ ∈ C1[0, T ],

ytt(x, t) + yxxxx(x, t) −

∫ t

0

κ(t− τ)yxxxx(x, τ)dτ + g(yt(x, t)) = 0

in L2(0, T ;L2(0, L)),

y(0, t) = yx(0, t) = yxx(L, t) = 0, t ≥ 0,

yxxx(L, t)−

∫ t

0

κ(t− τ)yxxx(L, t)dx = h(t)yt(L, t) + [θ(t) − θ̃] sin t, t ≥ 0,

y(x, 0) = y0(x), yt(x, t) = y1(x), x ∈ (0, L),

ht(t) = ry2t (L, t), t ≥ 0, h(0) = h0 > 0, r > 0,

θt(t) = yt(L, t) sin t, t ≥ 0, θ(0) = θ0.

By the Sobolev embedding theorem, it follows that y ∈ C((0, L)× [0, T ]).

Proof. Let us solve the variational problem with (2.5) which is given by: find
y(t) ∈ V such that

(ytt(t), w) + (yxx(t), wxx)−

∫ t

0

κ(t− τ)(yxx(τ), wxx)dτ + (g(yt(t)), w)(2.6)

+{h(t)yt(L, t) + (θ(t) − θ̃) sin t}w(L) = 0 for all w ∈ V.

Let {wj} be a complete orthogonal system of V for which {y0, y1} ∈ Span{w1,
w2}. For each m ∈ N, we denote Vm =Span{w1, w2, . . . , wm}. We search for a
function

ym(t) =

m∑

j=1

kj(t)wj

such that for any w ∈ Vm, it satisfies the approximate equation

(ymtt (t), w) + (ymxx(t), wxx)−

∫ t

0

κ(t− τ)(ymxx(τ), wxx)dτ + (g(ymt (t)), w)(2.7)

+{hm(t)ymt (L, t) + (θm(t)− θ̃) sin t}w(L) = 0,

hmt (t) = r
[ m∑

j=1

kjt (t)w
j(L)

]2
= r[ymt (L, t)]2,
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θmt (t) =
[ m∑

j=1

kjt (t)w
j(L)

]
sin t = ymt (L, t) sin t,

hm(0) = h0 > 0, θm(0) = θ0,

ym(0) = y0m → y0 in W, ymt (0) = y1m → y1 in V.

By standard methods in differential equations, we can prove the existence of
a solution to (2.7) on some interval, (0, tm), where tm = ∞ by using the first
estimate below. In order to prove Theorem 2.1 it suffices to prove the following
a priori estimates.

Estimate I. Replacing w by ymt in (2.7), we have

1

2

d

dt

(
‖ymt (t)‖2 + ‖ymxx(t)‖

2
)
+ (g(ymt (t)), ymt (t))(2.8)

=
d

dt

(∫ t

0

κ(t− τ)(ymxx(τ), y
m
xx(t))dτ

)
−

∫ t

0

κt(t− τ)(ymxx(τ), y
m
xx(t))dτ

− κ(0)‖ymxx(t)‖
2 − {hm(t)[ymt (L, t)]2 + [θm(t)− θ̃] sin t · ymt (L, t)}.

By hypotheses (2.4) and Cauchy-Schwartz inequality, we deduce that
∣∣∣
∫ t

0

κt(t− τ)(ymxx(τ), y
m
xx(t))dτ

∣∣∣(2.9)

≤ ‖ymxx(t)‖

∫ t

0

|κt(t− τ)|‖ymxx(τ)‖dτ

≤
m2

0

2
‖ymxx(t)‖

2 +
1

2

(∫ t

0

κ(t− τ)‖ymxx(τ)‖dτ
)2

≤
m2

0

2
‖ymxx(t)‖

2 +
1

2
‖κ‖L1(0,∞)

∫ t

0

κ(t− τ)‖ymxx(τ)‖
2dτ.

Integrating (2.8) over (0, t) and using (2.2) and (2.9), we obtain

‖ymt (t)‖2 + ‖ymxx(t)‖
2 +

1

r
[hm(t)]2 + [θm(t)− θ̃]2 + 2µ

∫ t

0

‖ymt (τ)‖2dτ(2.10)

≤ ‖ymt (0)‖2 + ‖ymxx(0)‖
2 +

1

r
[hm(0)]2 + [θ0 − θ̃]2

+ 2

∫ t

0

κ(t− τ)(ymxx(τ), y
m
xx(t))dτ

+
(
m2

0 + ‖κ‖2L1(0,∞) − 2κ(0)
)∫ t

0

‖yxx(τ)‖
2dτ.

Using Schwartz inequality and Young’s inequality, we get
∣∣∣
∫ t

0

κ(t− τ)(ymxx(τ), y
m
xx(t))dτ

∣∣∣(2.11)

≤ ‖ymxx(t)‖‖κ‖
1

2

L1(0,∞)

( ∫ t

0

κ(t− τ)‖ymxx(τ)‖
2dτ

) 1

2
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≤
1

8
‖ymxx(t)‖

2 + 2‖κ‖L1(0,∞)‖κ‖L∞(0,∞)

∫ t

0

‖ymxx(τ)‖
2dτ.

Combining the inequalities (2.10), (2.11) and applying Gronwall’s Lemma, we
see the first estimate:

‖ymt (t)‖2 + ‖ymxx(t)‖
2 +

1

r
[hm(t)]2 + [θm(t)− θ̃]2 ≤M1,(2.12)

where M1 > 0 depends on the initial data y0, y1, h0, θ0.
From this, we obtain ymt (L, t) ∈ L∞(0,∞). Therefore, the approximate so-

lution can be extended to the whole interval [0, T ], where T = ∞.

Estimate II. First of all, we estimate the L2-norm of ymtt (0). Considering
t = 0 and w = ymtt (0) in (2.7), then we get

‖ymtt (0)‖
2 + (ymxx(0), y

m
xxtt(0)) + (g(ymt (0)), ymtt (0)) + h0y

m
t (L, 0)ymtt (L, 0) = 0.

Since the compatibility condition (H1), we obtain

(ymxx(0), y
m
xxtt(0)) = ymxx(L, 0)y

m
xtt(L, 0)− ymxx(0, 0)y

m
xtt(0, 0)− ymxxx(L, 0)y

m
tt (L, 0)

+ ymtt (0, 0)y
m
xxx(0, 0) + (ymxxxx(0), y

m
tt (0))

= − h0y
m
t (L, 0)ymtt (L, 0)− (g(ymt (0)), ymtt (0)).

Therefore, from the above equality, there exists the following result

(2.13) ‖ymtt (0)‖ = 0.

Finally, differentiating (2.7) and writing the equation with w = ymtt (t), we have

1

2

d

dt
(‖ymtt (t)‖

2 + ‖ymxxt(t)‖
2) + κ(0)‖ymxxt(t)‖

2 + (g′(ymt (t))ymtt (t), y
m
tt (t))

(2.14)

+
(
r[ymt (L, t)]3 + hm(t)ymtt (L, t)

)
ymtt (L, t)

+
(
ymt (L, t)sin2t+ (θm(t)− θ̃) cos t

)
ymtt (L, t)

=
d

dt

(∫ t

0

κt(t− τ)(ymxx(τ), y
m
xxt(t))dτ

)
−

∫ t

0

κtt(t− τ)(ymxx(τ), y
m
xxt(t))dτ

− κt(0)(y
m
xx(t), y

m
xxt(t)) + κ(0)

d

dt
(ymxx(t), y

m
xxt(t)).

From hypotheses (2.4), we deduce that
∣∣∣
∫ t

0

κtt(t− τ)(ymxx(τ), y
m
xxt(t))dτ

∣∣∣(2.15)

≤
m2

2

2
‖yxxt(t)‖

2 +
1

2
‖κ‖L1(0,∞)

∫ t

0

κ(t− τ)‖ymxx(τ)‖
2dτ.

Since g ∈ C1(R) and ymt (t) is bounded by (2.12), there exists C1 > 0 depends
on the initial datas y0, y1, h0, θ0 such that

|(g′(ymt (t))ymtt (t), y
m
tt (t))| ≤ C1‖y

m
tt (t)‖

2.(2.16)
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Using (2.13), (2.15) and (2.16), we integrate (2.14) over (0, t) to obtain

1

2
‖ymtt (t)‖

2 +
1

2
‖ymxxt(t)‖

2 + κ(0)

∫ t

0

‖ymxxt(τ)‖
2dτ +

r

4
[ymt (L, t)]4

(2.17)

≤ C2 +
m2

2

2

∫ t

0

‖ymxxt(τ)‖
2dτ +

1

2
‖κ‖2L1(0,∞)

∫ t

0

‖ymxx(τ)‖
2dτ

+ C1

∫ t

0

‖ymtt (τ)‖
2dτ + κ(0)(ymxx(t), y

m
xxt(t))− κt(0)

∫ t

0

(ymxx(τ), y
m
xxt(τ))dτ

+

∫ t

0

κt(t− τ)(ymxx(τ), y
m
xxt(t))dτ +

r

4
[ymt (L, 0)]4 −

∫ t

0

hm(τ)[ymtt (L, τ)]
2dτ

−
1

2
[ymt (L, t)]2 sin2 t+

1

2

∫ t

0

[ymt (L, τ)]2 sin 2τdτ − ymt (L, t)[θm(t)− θ̃] cos t

+ ymt (L, 0)[θ0 − θ̃]+

∫ t

0

ymt (L, τ){ymt (L, τ) sin τ cos τ−[θm(τ)−θ̃] sin τ}dτ,

where C2 > 0 depends on the initial data y0, y1, h0.
Now, since (2.4), for any η > 0 we see that

|κ(0)(ymxx(t), y
m
xxt(t))| ≤

(κ(0))2

4η
‖ymxx(t)‖

2 + η‖ymxxt(t)‖
2,(2.18)

∣∣∣κt(0)
∫ t

0

(ymxx(τ), y
m
xxt(τ))dτ

∣∣∣ ≤
m2

0(κ(0))
2

4η

∫ t

0

‖ymxx(τ)‖
2dτ+η

∫ t

0

‖ymxxt(τ)‖
2dτ

(2.19)

and
∣∣∣
∫ t

0

κt(t− τ)(ymxx(τ), y
m
xxt(t))dτ

∣∣∣(2.20)

≤
m2

0

4η
‖κ‖L1(0,∞)‖κ‖L∞(0,∞)

∫ t

0

‖ymxx(τ)‖
2dτ + η‖ymxxt(t)‖

2.

From the inequality ab ≤ δ1a
2 + 1

4δ1
b2, δ1 > 0 and the Sobolev embedding

theorem ‖yt(L, t)‖
2 ≤ δ2‖yxxt(t)‖

2, δ2 > 0, we deduce
∣∣∣−

1

2
[ymt (L, t)]2 sin2 t− ymt (L, t)[θm(t)− θ̃] cos t

∣∣∣(2.21)

≤ δ1[y
m
t (L, t)]2 sin2 t+ δ1[y

m
t (L, t)]2 cos2 t+

1

4δ1
[θm(t)− θ̃]2

≤ δ̃1‖y
m
xxt(t)‖

2 +
1

4δ1
[θm(t)− θ̃]2, where δ̃1 = δ1δ2

and using Young’s inequality we obtain
∣∣∣
∫ t

0

ymt (L, τ){ymt (L, τ) sin τ cos τ − [θm(τ) − θ̃] sin τ}dτ
∣∣∣(2.22)
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≤

∫ t

0

[ymt (L, τ)]2dτ +
1

2

∫ t

0

[θm(τ) − θ̃]2dτ

≤
hm(t)

r
−
h0
r

+
1

2

∫ t

0

[θm(τ) − θ̃]2dτ.

Thus from (2.17)-(2.22), we have

1

2
‖ymtt (t)‖

2 +
1

2
‖ymxxt(t)‖

2 + κ(0)

∫ t

0

‖ymxxt(τ)‖
2dτ +

r

4
[ymt (L, t)]4

(2.23)

≤ C2 + C1

∫ t

0

‖ymtt (τ)‖
2dτ +

(κ(0))2

4η
‖ymxx(t)‖

2

+
(m2

2

2
+ η

)∫ t

0

‖ymxxt(τ)‖
2dτ + 2η‖ymxxt(t)‖

2

+
(1
2
‖κ‖2L1(0,∞) +

m2
0(κ(0))

2

4η
+
m2

0

4η
‖κ‖L1(0,∞)‖κ‖L∞(0,∞)

) ∫ t

0

‖ymxx(τ)‖
2dτ

+
r

4
[ymt (L, 0)]4 −

∫ t

0

hm(τ)[ymtt (L, τ)]
2dτ −

1

2
[ymt (L, t)]2 sin2 t

+
1

2

∫ t

0

[ymt (L, τ)]2 sin 2τdτ − ymt (L, t)[θm(t)− θ̃] cos t+ ymt (L, 0)[θ0 − θ̃]

+

∫ t

0

ymt (L, τ){ymt (L, τ) sin τ cos τ − [θm(τ) − θ̃] sin τ}dτ

≤ C2 + C1

∫ t

0

‖ymtt (τ)‖
2dτ +

(κ(0))2

4η
‖ymxx(t)‖

2

+
(m2

2

2
+ η

)∫ t

0

‖ymxxt(τ)‖
2dτ + 2η‖ymxxt(t)‖

2

+
(1
2
‖κ‖2L1(0,∞) +

m2
0(κ(0))

2

4η
+
m2

0

4η
‖κ‖L1(0,∞)‖κ‖L∞(0,∞)

) ∫ t

0

‖ymxx(τ)‖
2dτ

+
r

4
[ymt (L, 0)]4 +

3hm(t)

2r
+ δ̃1‖y

m
xxt(t)‖

2 +
1

4δ1
[θm(t)− θ̃]2 +

1

2
[ymt (L, 0)]2

+
1

2
[θ0 − θ̃]2 +

1

2

∫ t

0

[θm(τ) − θ̃]2dτ −
3h0
2r

.

From the inequalities (2.12) and (2.23) and choosing η > 0 sufficiently small,
we get

1

2
‖ymtt (t)‖

2 +
(1
2
− δ̃1

)
‖ymxxt(t)‖

2 + κ(0)

∫ t

0

‖ymxxt(τ)‖
2dτ +

r

4
[ymt (L, t)]4

≤ C3 + C1

∫ t

0

‖ymtt (τ)‖
2dτ +

(m2
2

2
+ η

)∫ t

0

‖ymxxt(τ)‖
2dτ,

where C3 > 0 depends on the initial data y0, y1, h0, θ0.
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Taking δ̃1 with 1
2 − δ̃1 > 0 and using of Gronwall’s Lemma, we have the

second estimate:

(2.24) ‖ymtt (t)‖
2 + ‖ymxxt(t)‖

2 + r[ymt (L, t)]4 ≤M2,

where M2 depends on the initial data y0, y1, h0, θ0.

Analysis of the nonlinear terms. By estimates (2.12) and (2.24), we
deduce that

{ym} is bounded in L∞(0, T ;V ),(2.25)

{ymt } is bounded in L∞(0, T ;V ),

{ymtt } is bounded in L∞(0, T ;L2(0, L)),

{ymt (L, t)} is bounded in L2(0, T ),

{hm} is bounded in L∞(0, T ),

{hmt } = {r(ymt (L, t))2} is bounded in L∞(0, T ),

{θm} is bounded in L∞(0, T ),

{θmt } = {ymt (L, t) sin t} is bounded in L∞(0, T ).

Therefore, there exists a subsequence of {ym}, still denoted by {ym} such that

ym → y weakly star in L∞(0, T ;V ),(2.26)

ymt → yt weakly star in L∞(0, T ;V ),

ymtt → ytt weakly star in L∞(0, T ;L2(0, L)),

ymt (L, t) → yt(L, t) weakly in L2(0, T ),

hm → h weakly star in L∞(0, T ),

hmt → ht weakly star in L∞(0, T ),

θm → θ weakly star in L∞(0, T ),

θmt → θt weakly star in L∞(0, T ).

Due to the compact embedding V →֒ L2(0, L), we can get a subsequence such
that

(2.27) ymt → yt strongly in L2(0, T ;L2(0, L)).

From (H2) and (2.27), we get

(2.28) g(ymt ) → g(yt) a.e. in x ∈ (0, L), t > 0.

From the above convergence and due to the boundedness of the sequence
{g(ymt )} in L2(0, T ;L2(0, L)), we conclude by Lion’s Lemma that

g(ymt ) → g(yt) weakly in L2(0, T ;L2(0, L)).

Moreover, by the Sobolev embedding theorem and (2.26), we see that h ∈
C1[0, T ] and hm(t)ymt (L, t) → h(t)yt(L, t) weakly in L2(0, T ).

We also derive that

θ ∈ C1[0, T ] and θm(t) sin t→ θ(t) sin t weakly in L2(0, T ).
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The above convergence results are sufficient to pass to the limit in the nonlin-
ear terms of (2.7). Then it is a matter of routine to deduce the existence of
global solutions in [0, T ]. The uniqueness can be proved by the straightforward
methods and Gronwall’s inequality. �

3. Exponential stability

Having established global existence of solution to (1.3), we focus our atten-
tion on exponential decay that can be obtained for the energy function.

We define the energy E(t) of problem (1.3) by E(t) = 1
2‖yt(t)‖

2+ 1
2‖yxx(t)‖

2.
Then the derivative of the energy is given by

Et(t) = − (g(yt(t)), yt(t)) +

∫ t

0

κ(t− τ)(yxx(τ), yxxt(τ))dτ − h(t)(yt(L, t))
2

− [θ(t)− θ̃] sin t · yt(L, t).

Defining

(3.1) (κ�yxx)(t) =

∫ t

0

κ(t− τ)‖yxx(τ) − yxx(t)‖
2dτ.

By simple computation, we obtain

(κ�yxx)t(t) = (κt�yxx)(t)− 2

∫ t

0

κ(t− τ)(yxx(τ), yxxt(t))dτ(3.2)

+
d

dt

(
‖yxx(t)‖

2

∫ t

0

κ(τ)dτ
)
− κ(t)‖yxx(t)‖

2.

From (3.2), we see that
∫ t

0

κ(t− τ)(yxx(τ), yxxt(t))dτ(3.3)

= −
1

2
(κ�yxx)t(t) +

1

2
(κt�yxx)(t) +

1

2

d

dt

(
‖yxx(t)‖

2

∫ t

0

κ(τ)dτ
)

−
1

2
κ(t)‖yxx(t)‖

2.

Define the modified energy by

e(t) =
1

2
‖yt(t)‖

2 +
1

2
(κ�yxx)(t) +

1

2

(
1−

∫ t

0

κ(τ)dτ
)
‖yxx(t)‖

2(3.4)

+
1

2
[θ(t) − θ̃]2.

Then, from (3.3) and (3.4) we obtain

et(t) = − (g(yt(t)), yt(t)) +
1

2
(κt�yxx)(t)−

1

2
κ(t)‖yxx(t)‖

2 − h(t)(yt(L, t))
2

(3.5)

≤ − (g(yt(t)), yt(t))−
m1

2
(κ�yxx)(t)−

1

2
κ(t)‖yxx(t)‖

2
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− h(t)(yt(L, t))
2 ≤ 0, ∀t ≥ 0.

We observe that in view of hypotheses (2.3) and (2.4), we see that e(t) ≥ 0
and E(t) ≤ ℓ−1e(t). Therefore it is enough to obtain the desired exponential
stability for the modified energy e(t) which will be done below. In order to
carry the proof of Theorem 3.2, we need the following Theorem 3.1.

Theorem 3.1. Let y be the solution given by Theorem 2.1 and e(t) be defined

by (3.4). Then we have

lim
t→∞

e(t) = 0, lim
t→∞

h(t) ≤
√
2re(0) + (h(0))2 ,

h(t) ≤
√
2re(0) + (h(0))2, ∀t ≥ 0.

Now, we define the perturbed energy by

eε(t) = e(t) + εψ(t), where ψ(t) = δ

∫ t

0

y(x, t)yt(x, t)dx with 0 < δ <
1

2
.

(3.6)

Then, we obtain the following two propositions.

Proposition 3.1. There exists C
′

1 > 0 such that

(3.7) |eε(t)− e(t)| ≤ εC
′

1e(t), ∀t ≥ 0 and ∀ε > 0.

Proof. The proof of this proposition is the same the proof of [15, Proposition
3.1], so we will omit this proof. �

Proposition 3.2. There exist positive constants C′
2, C′

3 and C′
4 such that

d

dt
eε(t) ≤ − εC′

2e(t) + εC′
3(1 + h(t))(y(L, t))2 + εC′

4[θ(t)− θ̃]2,

∀t ≥ 0 and ∀ε ∈ [0, ε1].

Proof. Using (1.1), we deduce that

d

dt
ψ(t) = δ

∫ L

0

y2t (t)dx + δ

∫ L

0

y(t)ytt(t)dx(3.8)

= δ

∫ L

0

(yt(t))
2dx+ δ

∫ t

0

y(t)(−yxxxx(t))dx

+ δ

∫ L

0

y(t)
(∫ t

0

κ(t− τ)yxxxx(τ)dτ
)
dx

− δ

∫ L

0

y(t)g(yt(t))dx.

By y(0, t) = yx(0, t) = yxx(L, t) = 0 and y ∈ L∞(0, T ;W ), we have the follow-
ing two inequalities

∫ L

0

y(t)(−yxxxx(t))dx
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= − y(L, t)yxxx(L, t) +

∫ L

0

yx(t)yxxx(t)dx

= − y(L, t)yxxx(L, t) + yx(L, t)yxx(L, t)−

∫ L

0

(yxx(t))
2dx

= − y(L, t)yxxx(L, t)−

∫ L

0

(yxx(t))
2dx

and
∫ L

0

y(t)
( ∫ t

0

κ(t− τ)yxxxx(τ)dτ
)
dx

= y(L, t)
(∫ t

0

κ(t− τ)yxxx(L, τ)dτ
)
−

∫ L

0

yx(t)
( ∫ t

0

κ(t− τ)yxxx(τ)dτ
)
dx

= y(L, t)
(∫ t

0

κ(t− τ)yxxx(L, τ)dτ
)
− yx(L, t)

( ∫ t

0

κ(t− τ)yxx(L, τ)dτ
)

+

∫ L

0

yxx(t)
( ∫ t

0

κ(t− τ)yxx(τ)dτ
)
dx

= y(L, t)
(∫ t

0

κ(t− τ)yxxx(L, τ)dτ
)
+

∫ L

0

yxx(t)
( ∫ t

0

κ(t− τ)yxx(τ)dτ
)
dx.

Thus, from (3.8) we get

d

dt
ψ(t) = δ

∫ t

0

(yt(t))
2dx− δy(L, t)

[
yxxx(L, t)−

∫ t

0

κ(t− τ)yxxx(L, τ)dτ
]

(3.9)

− δ

∫ L

0

(yxx(t))
2dx+ δ

∫ L

0

yxx(t)
( ∫ t

0

κ(t− τ)yxx(τ)dτ
)
dx

− δ

∫ L

0

y(t)g(yt(t))dx.

From the assumptions on g, Young’s inequality and Sobolev imbedding theo-
rem, we see that

(3.10) δ
∣∣∣
∫ t

0

y(t)g(yt(t))dx
∣∣∣ ≤M ′

1‖yt(t)‖
2 +M ′

2‖yxx(t)‖
2,

where M ′
1 and M ′

2 are some positive constants.
Moreover, for any η > 0, from Fubini’s theorem, we have

∫ L

0

yxx(t)
( ∫ t

0

κ(t− τ)yxx(τ)dτ
)
dx(3.11)

=

∫ t

0

κ(t− τ)
( ∫ L

0

yxx(τ)yxx(t)dx
)
dτ

=

∫ t

0

κ(t− τ)
( ∫ L

0

(yxx(τ) − yxx(t))yxx(t)dx
)
dτ
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+

∫ t

0

κ(t− τ)
( ∫ L

0

(yxx(t))
2dx

)
dτ

≤ η‖yxx(t)‖
2 +

1

4η

∫ t

0

∫ L

0

(κ(t− τ))2(yxx(τ)− yxx(t))
2dxdτ

+

∫ t

0

κ(τ)
( ∫ L

0

(yxx(t))
2dx

)
dτ

≤ η‖yxx(t)‖
2 +

1

4η
‖κ‖L∞(0,∞)(κ�yxx)(t) +

∫ t

0

κ(τ)dτ‖yxx(t)‖
2.

Combining (3.9)-(3.11), we obtain

d

dt
ψ(t) ≤ δ

∫ L

0

(yt(t))
2dx− δy(L, t)

[
yxxx(L, t)−

∫ t

0

κ(t− τ)yxxx(L, τ)dτ
]

(3.12)

− δ

∫ t

0

(yxx(t))
2dx+M ′

1‖yt(t)‖
2 +M ′

2‖yxx(t)‖
2 + ηδ‖yxx(t)‖

2

+
δ

4η
‖κ‖L∞(0,∞)(κ�yxx)(t) + δ

∫ t

0

κ(τ)dτ‖yxx(t)‖
2

≤ (δ +M ′
1)‖yt(t)‖

2 − δy(L, t)[h(t)yt(L, t) + (θ(t)− θ̃) sin t]

+
(
M ′

2 + ηδ + δ

∫ t

0

κ(τ)dτ − δ
)
‖yxx(t)‖

2

+
δ

4η
‖κ‖L∞(0,∞)(κ�yxx)(t)

= − δe(t) +
(
M ′

1 +
3

2
δ
)
‖yt(t)‖

2

+
(
M ′

2 + ηδ +
δ

2

∫ t

0

κ(τ)dτ −
δ

2

)
‖yxx(t)‖

2

+
(δ
2
+

δ

4η
‖κ‖L∞(0,∞)

)
(κ�yxx)(t)

− δy(L, t)[h(t)yt(L, t) + (θ(t) − θ̃) sin t] +
δ

2
[θ(t)− θ̃]2.

On the other hand, from (2.2), (3.5), (3.6) and (3.12), we get

d

dt
eε(t) =

d

dt
e(t) + ε

d

dt
ψ(t)(3.13)

= − (g(yt(t)), yt(t))−
m1

2
(κ�yxx)(t)−

1

2
κ(t)‖yxx(t)‖

2

− h(t)(yt(L, t))
2 − εδe(t) + ε

(
M ′

1 +
3

2
δ
)
‖yt(t)‖

2

+ ε
(
M ′

2 + ηδ +
δ

2

∫ t

0

κ(τ)dτ −
δ

2

)
‖yxx(t)‖

2
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+ ε
(δ
2
+

δ

4η
‖κ‖L∞(0,∞)

)
(κ�yxx)(t)

− εδy(L, t)[h(t)yt(L, t) + (θ(t) − θ̃) sin t] +
εδ

2
[θ(t) − θ̃]2

≤ − εδe(t)−
(
µ− ε

(
M ′

1 +
3

2
δ
))

‖yt(t)‖
2

−
(m1

2
− ε

(δ
2
+

δ

4η
‖κ‖L∞(0,∞)

))
(κ�yxx)(t)

−
(1
2
κ(t)− ε

(
M ′

2 + ηδ +
δ

2

∫ t

0

κ(τ)dτ −
δ

2

))
‖yxx(t)‖

2

− h(t)
(
1−

δε

2

)
(yt(L, t))

2

+
εδ

2
(1 + h(t))(y(L, t))2 + εδ[θ(t) − θ̃]2.

Now, we define

ε1 = min
{ 2µ

2M ′
1 + 3δ

,
2m1η

δ(2η + ‖κ‖L∞(0,∞))
,

κ(t)

2M ′
2 + 2ηδ + δ

∫ t

0 κ(τ)dτ − δ
,
2

δ

}
.

(3.14)

Considering ε ∈ [0, ε1] and choosing δ > 0 such that (2η− ℓ)δ+2M ′
2 > δ, then

from (3.13) and (3.14), we obtain

d

dt
eε(t) ≤ −εδe(t) +

εδ

2
(1 + h(t))(y(L, t))2 + εδ[θ(t) − θ̃]2.(3.15)

This completes the proof of Proposition 3.2. �

Proof of Theorem 3.1. From Proposition 3.1, we see that

(3.16) (1 − εC′
1)e(t) ≤ eε(t) ≤ (1 + εC′

1)e(t), ∀t ≥ 0.

From (3.15) and (3.16), we have

d

dt
eε(t) ≤

−εδ

1 + εC′
1

eε(t) +
εδ

2
(1 + h(t))(y(L, t))2 + εδ[θ(t) − θ̃]2.(3.17)

Let Cε = εδ/(1 + εC′
1) and apply Gronwall’s inequality to (3.17), we get

eε(t) ≤ e−Cεteε(0) +
εδ

2

∫ t

0

e−Cε(t−τ)(1 + h(τ))(y(L, τ))2dτ(3.18)

+ εδ

∫ t

0

e−Cε(t−τ)[θ(t)− θ̃]2dτ

≤ e−Cεteε(0) +
εδ

2
sup
t≥0

[1 + |h(t)|]

∫ t

0

e−Cε(t−τ)(y(L, τ))2dτ

+ εδ

∫ t

0

e−Cε(t−τ)[θ(t)− θ̃]2dτ.
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Referring to the paper [7], we deduce that
∫ t

0

e−Cε(t−τ)(y(L, τ))2dτ

≤

∫ t

2

0

e−Cε(t−τ)(y(L, τ))2dτ +

∫ t

t

2

e−Cε(t−τ)(y(L, τ))2dτ

≤ max
0≤τ≤ t

2

e−Cε(t−τ)

∫ t

2

0

(y(L, τ))2dτ + max
t

2
≤τ≤t

e−Cε(t−τ)

∫ t

t

2

(y(L, τ))2dτ

≤ e−
Cε

2
t

∫ t

2

0

(y(L, τ))2dτ +

∫ ∞

t

2

(y(L, τ))2dτ.

By Theorem 2.1 and W →֒ L2(0, T ;L2(0, L)), y(L, t) ∈ L2(0,∞), we obtain

(3.19)

∫ t

0

e−Cε(t−τ)(y(L, τ))2dτ → 0 as t→ ∞.

Similarly, we see that

(3.20)

∫ t

0

e−Cε(t−τ)[θ(τ) − θ̃]2dτ → 0 as t→ ∞.

From (3.18), (3.19) and (3.20), we deduce

(3.21) lim
t→∞

eε(t) = 0.

Let ε0 = min{ε1, 1/(2C
′
1)}, where C

′
1 is given in Proposition 3.1.

Since ε ≤ 1/(2C′
1) (ε ∈ (0, ε0]) and from (3.16), we get

(3.22)
1

2
e(t) ≤ eε(t) ≤

3

2
e(t).

Therefore, from (3.21) and (3.22), we have

lim
t→∞

e(t) = 0.(3.23)

Now, we consider the Lyapunov functional U(t) for the system (1.3) as follows:

U(t) = e(t) +
(h(t))2

2r
.

Then from (3.5), we see that

(3.24) Ut(t) ≤ 0.

Since yt(L, ·) ∈ L2(0,∞), we obtain

sup
t≥0

{
e(t) +

(h(t))2

2r

}
≤M ′

3,

where M ′
3 > 0 is a constant depending on the initial data.

From U(t) is decreasing, we get

e(∞) +
1

2r
(h(∞))2 ≤ e(0) +

1

2r
(h(0))2.(3.25)



962 YONG HAN KANG, JONG YEOUL PARK, AND JUNG AE KIM

Thus, from (3.23) and (3.25), we have

h(∞) ≤
√
2re(0) + (h(0))2.

Since h(t) is nondecreasing, we deduce that

(3.26) h(t) ≤
√
2re(0) + (h(0))2.

Thus, the proof of Theorem 3.1 is completed. �

We can now proceed to state our main exponential stability result.

Theorem 3.2. Let y be the solution of Theorem 2.1 and let e(t) be defined by

(3.4). Then there exist constants K > 0 and ν > 0 depending on the initial

data such that

E(t) ≤ Ke−νt, ∀t ≥ 0.

Proof. From (3.17), we have

d

dt
eε(t) ≤ −Cεeε(t) +

εδ

2
(1 + h(t))(y(L, t))2 + εδ[θ(t)− θ̃]2,(3.27)

where Cε = δε/(1 + εC′
1).

Using (3.26) and by integrating over (0, t) in (3.27) we obtain

eε(t) ≤ eε(0)− Cε

∫ t

0

eε(τ)dτ +
εδ

2

∫ t

0

(1 + h(τ))(y(L, τ))2dτ

+ εδ

∫ t

0

[θ(t)− θ̃]2dτ

≤ eε(0)− Cε

∫ t

0

eε(τ)dτ +
εδ

2
(1 + ‖h‖L∞(0,∞))

∫ t

0

(y(L, τ))2dτ

+ εδ

∫ t

0

[θ(t)− θ̃]2dτ.

Since
∫∞

0
(y(L, τ))2dτ and

∫∞

0
[θ(t)− θ̃]2dτ are bounded, by Gronwall’s inequal-

ity, we deduce that

eε(t) ≤ (K1 + eε(0)) exp(−Cεt),

where K1 is some positive constant.

For sufficiently small ε
(
0 < ε < 1

2C′

1

)
, using Proposition 3.1, we get

E(t) ≤ ℓ−1e(t) ≤ Ke−νt,

where K = 2ℓ−1(K1 + eε(0)) and ν = Cε.
The proof of Theorem 3.2 is completed. �



A MEMORY TYPE BOUNDARY STABILIZATION 963

References

[1] D. Andrade and J. M. Rivera, Exponential decay of non-linear wave equation with a

viscoelastic boundary condition, Math. Methods Appl. Sci. 23 (2000), no. 1, 4161.
[2] J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl.

42 (1973), 61–90.
[3] F. Conrad and O. Omër, On the stabilization of a flexible beam with a tip mass, SIAM

J. Control Optim. 36 (1998), no. 6, 1962–1986.
[4] M. Dahleh and W. Hopkins, Adaptive stabilization of single-input single-output delay

systems, IEEE Trans. Automat. Control 31 (1986), no. 6, 577–579.
[5] M. Feckan, Free vibrations of beams on bearings with nonlinear elastic responses, J.

Differential Equations 154 (1999), no. 1, 5572.
[6] E. Feireisl, Nonzero time periodic solutions to an equation of Petrovsky type with non-

linear boundary condition: slow oscillations of beams on elastic bearings, Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 1, 133–146.

[7] B. Z. Guo and W. Guo, Adaptive stabilization for a Kirchhoff-type nonlinear beam under

boundary output feedback control, Nonlinear Anal. 66 (2007), no. 2, 427–441.
[8] B. Z. Guo and Z. H. Luo, Initial-boundary value problem and exponential decay for a

flexible-beam vibration with gain adaptive direct strain feedback control, Nonlinear Anal.
27 (1996), no. 3, 353–365.

[9] M. Kirane and N. E. Tatar, A memory type boundary stabilization of a mildly damped

wave equation, Electron. J. Qual. Theory Differ. Equ. 1999 (1999), no. 6, 1–7.
[10] I. Lasiecka, Exponential decay rates for the solutions of Euler-Bernoulli equations with

boundary dissipation occurring in the moments only, J. Differential Equations 95 (1992),
no. 1, 169–182.

[11] J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applica-

tions, Springer-Verlag, New York, 1972.
[12] H. Ma, Uniform decay rates for the solutions to the Euler-Bernoulli plate equation

with boundary feedback via bending moments, Differential Integral Equations 5 (1992),
1121–1150.

[13] T. F. Ma, Boundary stabilization for a non-linear beam on elastic bearings, Math.
Methods Appl. Sci. 24 (2001), 583–594.

[14] J. Y. Park, Y. H. Kang, and J. A. Kim, Existence and exponential stability for a Euler-

Bernoulli beam equation with memory and boundary output feedback control term, Acta
Appl. Math. 104 (2008), no. 3, 287–301.

[15] J. Y. Park and J. A. Kim, Existence and uniform decay for Euler-Bernoulli beam equa-

tion with memory term, Math. Methods Appl. Sci. 27 (2004), no. 14, 1629–1640.
[16] S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped

extensible beam equation, J. Differential Equations 135 (1997), no. 2, 299314.
[17] M. L. Santos, Asymptotic behaviour of solutions to wave equations with a memory

condition at the boundary, Electron. J. Differential Equations 2001 (2001), no. 73, 1–
11.

Yong Han Kang

Institute of Liberal Education

Catholic University of Daegu

Gyeongsan 712-702, Korea

E-mail address: yonghann@cu.ac.kr



964 YONG HAN KANG, JONG YEOUL PARK, AND JUNG AE KIM

Jong Yeoul Park

Department of Mathematics College of Science

Pusan National University

Pusan 609-735, Korea

E-mail address: jyepark@pusan.ac.kr

Jung Ae Kim

Department of Mathematics College of Science

Hanbat National University

Daejeon 305-719, Korea

E-mail address: jakim@nims.re.kr


