J. KSIAM Vol.16, No.4, 243-248, 2012

CRITERION FOR BLOW-UP IN THE EULER EQUATIONS VIA CERTAIN PHYSICAL QUANTITIES

NAMKWON KIM

DEPARTMENT OF MATHEMATICS, CHOSUN UNIVERSITY, KWANGJU, 501-759, REPUBLIC OF KOREA *E-mail address*: kimnamkw@chosun.ac.kr

ABSTRACT. We consider the (possible) finite time blow-up of the smooth solutions of the 3D incompressible Euler equations in a smooth domain or in \mathbb{R}^3 . We derive blow-up criteria in terms of L^{∞} of the partial component of Hessian of the pressure together with partial component of the vorticity.

1. INTRODUCTION

Let Ω be \mathbf{R}^3 or a smooth bounded domain in \mathbf{R}^3 . We consider the Euler equations of incompressible fluid in Ω :

$$\begin{cases} u_t + (u \cdot \nabla)u + \nabla p = f, \\ \operatorname{div} u = 0, \end{cases}$$
(1.1)

with initial velocity u_0 and boundary condition $u \cdot n = 0$. Here n is the unit outer normal vector to $\partial \Omega$.

It is known that if the initial velocity, $u_0 \in H^m$, m > 5/2, then there exists a unique smooth solution for the Euler equations up to some positive time(See [7], [10] and references therein). A natural question is then whether this solution quits to be smooth and thus quits to be a strong solution any more in a finite time. This question is also related with the regularity problem of the 3D incompressible Navier-Stokes equations[6]. There have been developed many criteria whether the solution blows up in a finite time. Especially, blow-up criteria in terms of vorticity, deformation tensor, and the Hessian of the pressure have been developed under various situations(See for example [2, 4, 5, 9] and [3]). Also, localization of these blowup criteria have been developed[1, 8]. Among others, blow-up criteria by pressure involve all components of the Hessian of the pressure until now.

Our aim here is developing blow-up criteria in terms of L^{∞} norm of some components of the Hessian of the pressure together with L^{∞} norm of some component of the vorticity. We shall derive differential inequalities for L^q norm of vorticity using certain equations for the product

Received by the editors November 19 2012; Accepted December 7 2012.

²⁰¹⁰ Mathematics Subject Classification. 35Q30, 35K15.

Key words and phrases. Euler equations, blow-up, criterion.

This work is partially supported by Chosun university, 2007.

NAMKWON KIM

of the vorticity and the deformation tensor and apply the energy argument to those inequalities. This approach is already used in [1] to derive a criterion by L^{∞} norm of the Hessian of the pressure.

2. BLOW-UP CRITERIA

Let T^* be the blow-up time of a classical solution u for the Euler equations (1.1). The singular set for u at time $t = T^*$ is defined by the set of all $x \in \overline{\Omega}$ such that for any ball B centered at x,

$$\liminf_{t \nearrow T^*} \|u(t)\|_{H^m(B \cap \Omega)} = \infty.$$

Let us denote the singular set by S. It is clear that S is a closed set in $\overline{\Omega}$. If $H \subset S$ is a bounded closed component of S, we call it an isolated singular set for u. Trivially, dist(H, S - H) > 0.

Let $\omega = \nabla \times u$ be the vorticity and $J = \omega \cdot \nabla u$. Then, taking a curl to the first equation in (1.1) and by direct calculation, for $0 < t < T^*$

$$\frac{\partial\omega}{\partial t} + (u \cdot \nabla)\omega = J, \qquad (2.1)$$

$$\frac{\partial J}{\partial t} + (u \cdot \nabla)J = -(\omega \cdot \nabla)\nabla p.$$
(2.2)

Throughout this section, we denote $\tilde{\omega} = (\omega_1, \omega_2)$ and $\tilde{\nabla} = (\partial_1, \partial_2)$. We start with the following lemma first.

Lemma 1. Let $g \in C[0, a]$ and $A, B \in L^1[0, a]$ be nonnegative and

$$g(t) - g(0) \le \int_0^t \int_0^s \left(A(\tau)g(\tau) + B(\tau) \right) d\tau ds, \quad t \in [0, a].$$
(2.3)

Then g satisfies

$$g(t) \le \left(g(0) + \int_0^t \int_0^s B\right) \exp \int_0^t \int_0^s A d\tau ds.$$
(2.4)

Proof. We shall show that for any $\epsilon > 0$,

$$g(t) \le \left(g(0) + \int_0^t \int_0^s B + \epsilon\right) \exp \int_0^t \int_0^s A(\tau) d\tau ds$$

For simplicity, let us denote $X(s) = \exp \int_0^s \int_0^r A(\tau) d\tau dr$. Suppose not. Then, since the LHS of the above is smaller than the RHS of the above at t = 0, for some $\epsilon > 0$, there would be a first time b < a such that the equality holds in the above. However, at t = b, by (2.3),

$$g(b) \le \int_0^b \int_0^t A(s) \left[(g(0) + \epsilon) X(s) + X(s) \int_0^s \int_0^r B \right] + g(0) + \int_0^b \int_0^t B.$$

244

By integration by parts,

$$\int_{0}^{b} \int_{0}^{t} A(s)X(s) = \left[\int_{0}^{t} A(s)X(t) - \int_{0}^{t} \left(\int_{0}^{s} A(\tau)\right)^{2} X(s)\right]$$

$$\leq \int_{0}^{b} \int_{0}^{t} A(s)X(t)$$

$$= X(b) - X(0) = \exp \int_{0}^{b} \int_{0}^{r} A(\tau)d\tau d\tau - 1,$$

Similarly, by integration by parts,

$$\begin{split} \int_0^t A(s)X(s) \int_0^s \int_0^r B &= \int_0^t A(s)X(t) \int_0^t \int_0^r B \\ &- \int_0^t \left(\int_0^s A(\tau)d\tau \right)^2 X(s) \int_0^s \int_0^r B \\ &- \int_0^t \int_0^s A(\tau)d\tau X(s) \int_0^s B \\ &\leq \int_0^t A(s)X(t) \int_0^t \int_0^r B. \end{split}$$

Therefore,

$$\begin{split} \int_{0}^{b} \int_{0}^{t} A(s)X(s) \int_{0}^{s} \int_{0}^{r} B &\leq \int_{0}^{b} \int_{0}^{t} A(s)X(t) \int_{0}^{t} \int_{0}^{r} B \\ &\leq X(b) \int_{0}^{b} \int_{0}^{r} B - \int_{0}^{b} X(t) \int_{0}^{t} B \\ &\leq X(b) \int_{0}^{b} \int_{0}^{r} B - \int_{0}^{b} \int_{0}^{t} B \end{split}$$

by $X(t) \ge 1$. Gathering these inequalities, we have

$$g(b) \le (g(0) + \epsilon)X(b) - \epsilon + X(b) \int_0^b \int_0^r B = g(b) - \epsilon.$$

Thus, we arrive at a contradiction and finish the proof.

Theorem 1. Let u be a smooth solution of (1.1), $f \in L^{\infty}(0, \infty; H^m)$ a external force, H be an isolated singular set. For any relatively open set G containing H,

$$\int_0^{T^*} \left[(T^* - t) \| \nabla \partial_3 p(t) \|_{L^{\infty}(G)} + \sup_{s \le t} \| \tilde{\omega} \|_{L^{\infty}(G)}(s) \right] dt = +\infty.$$

Proof. Without loss of generality, we can assume that there exist an (relatively) open smooth set $W \supset G$, $dist(W^c, G) > 0$. Let ξ be a smooth cutoff function such that $\xi = 1$ on G and

 $\xi = 0$ on W^c . For convenience, let us denote

$$A_3(t) = (\int_{\Omega} |\omega_3|^q \xi dx)^{1/q}, \quad B_3(t) = (\int_{\Omega} |J_3|^q \xi dx)^{1/q},$$

 $\tilde{D} = \|\tilde{\nabla}\partial_3 p\|_{L^{\infty}(W)}$, and $D_3 = \|\partial_3^2 p\|_{L^{\infty}(W)}$. \tilde{A} is similarly defined with $\tilde{\omega}$. Multiplying the third component of (2.1) by $\xi |\omega_3|^{q-2} \omega_3$ and integrating over Ω , we have

$$\frac{1}{q}\frac{d}{dt}\int_{\Omega}|\omega_{3}|^{q}\xi dx = \frac{1}{q}\int_{\Omega}|\omega_{3}|^{q}(u\cdot\nabla)\xi dx + \int_{\Omega}|\omega_{3}|^{q-2}\omega_{3}J_{3}\xi dx$$

$$\leq \frac{C}{q}\int_{W_{\Omega}\setminus G_{\Omega}}|\omega|^{q}|u|dx + \int_{\Omega}|\omega_{3}|^{q-1}|J_{3}|\xi dx$$

$$\leq CC^{q+1}\frac{1}{q}\|u\|_{H^{m}(W_{\Omega}\setminus G_{\Omega})}^{q+1} + A_{3}^{q-1}B_{3}.$$
(2.5)

Similarly, multiplying (2.2) by $\xi |J_3|^{q-2} J_3$ and integrating over Ω , we have

$$\frac{1}{q} \frac{d}{dt} \int_{\Omega} |J_{3}|^{q} \xi dx = \frac{1}{q} \int_{\Omega} |J_{3}|^{q} (u \cdot \nabla) \xi dx - \int_{\Omega} |J_{3}|^{q-2} J_{3}(\omega \cdot \nabla) \nabla_{3} p \xi dx \\
\leq \frac{C}{q} \int_{W_{\Omega} \setminus G_{\Omega}} |J|^{q} |u| dx + \int_{\Omega} |J_{3}|^{q-1} [|\omega_{3}|| \partial_{3}^{2} p| + |\tilde{\omega}|| \tilde{\nabla} \partial_{3} p|] \xi dx \\
\leq \frac{C}{q} C^{2q+1} ||u||_{H^{m}(W_{\Omega} \setminus G_{\Omega})}^{2q+1} + \left[||\partial_{3}^{2} p||_{L^{\infty}(W_{\Omega})} (\int_{\Omega} |\omega_{3}|^{q} \xi dx)^{\frac{1}{q}} \right] \\
+ \tilde{A} \tilde{D} \left[(\int_{\Omega} |J_{3}|^{q} \xi dx)^{\frac{q-1}{q}} \\
\leq \frac{C^{2q+2}}{q} + D_{3} A_{3} B_{3}^{q-1} + \tilde{A} \tilde{D} B_{3}^{q-1}.$$
(2.6)

From the above equation, we get

$$(B_3^q + C^{2q})^{\frac{q-1}{q}} \frac{d}{dt} (B_3^q + C^{2q})^{1/q} = \frac{1}{q} \frac{d}{dt} B_3^q$$

$$\leq \frac{C^{2q+2}}{q} + D_3 A_3 B_3^{q-1} + \tilde{A} \tilde{D} B_3^{q-1}$$

$$\leq (\frac{C^2}{q} + D_3 A_3 + \tilde{A} \tilde{D}) (B_3^q + C^{2q})^{\frac{q-1}{q}}.$$

Therefore, applying the Gronwall lemma, we have

$$(B_3^q + C^{2q})^{1/q}(t) \le (B_3^q + C^{2q})^{1/q}(0) + \int_0^t (\frac{C^2}{q} + D_3A_3 + \tilde{A}\tilde{D}).$$
(2.7)

Plugging the above into (2.5), we have

$$\frac{1}{q}\frac{d}{dt}A_3^q(t) \le \frac{1}{q}C^{2q+2} + A_3^{q-1}\left(C + \int_0^t \tilde{A}\tilde{D} + \int_0^t D_3A_3\right).$$

246

Then, we again have

$$\begin{aligned} (A_3^q + C^{2q})^{\frac{q-1}{q}} \frac{d}{dt} (A_3^q + C^{2q})^{\frac{1}{q}} &= \frac{1}{q} \frac{d}{dt} A_3^q \\ &\leq \frac{C^{2q+2}}{q} + A_3^{q-1} \left(C + \int_0^t \tilde{A} \tilde{D} + \int_0^t D_3 A_3 \right) \\ &\leq \left(\frac{C^2}{q} + \int_0^t \tilde{A} \tilde{D} + \int_0^t D_3 (A_3^q + C^{2q})^{1/q} \right) \times \\ &\quad (A_3^q + C^{2q})^{\frac{q-1}{q}}. \end{aligned}$$

Subsequently, by the Gronwall lemma,

$$(A_3^q + C^{2q})^{1/q}(t) \le (A_3^q + C^{2q})^{1/q}(0) + \int_0^t \int_0^s (\frac{C^2}{q} + D_3A_3 + \tilde{A}\tilde{D}).$$

Here, we redefine C suitably large constant. C depends on u_0 , T^* , and $\sup_t ||u||_{H^m(W_\Omega \setminus G_\Omega)}(t)$ but can be chosen independent of q since q > 1. Integrating the above and using (2.4), we have

$$A_3(t) \le (C + A_3(0) + \int_0^t \int_0^s \tilde{A}\tilde{D}) \exp \int_0^t \int_0^s D_3.$$

Letting $q \to \infty$, we arrive at

$$\begin{split} \|\omega_3\|_{L^{\infty}(G)}(t) &\leq (C + \|\omega_3\|_{L^{\infty}(W)}(0) + \int_0^t \int_0^s \|\tilde{\omega}\|_{L^{\infty}(W)} \|\tilde{\nabla}\nabla_3 p\|_{L^{\infty}(W)}) \times \\ & \exp \int_0^t \int_0^s \|\nabla_3^2 p\|_{L^{\infty}(W)}. \end{split}$$

Since $\nabla^2 p$ is also uniformly bounded on $W \setminus G$,

$$\int_{0}^{t} \int_{0}^{s} \|\tilde{\omega}\|_{L^{\infty}(W)} \|\tilde{\nabla}\nabla_{3}p\|_{L^{\infty}(W)} \leq \sup_{s < t} \|\tilde{\omega}\|_{L^{\infty}(W)}(s) \int_{0}^{t} \int_{0}^{s} \|\tilde{\nabla}\nabla_{3}p\|_{L^{\infty}(W)},$$

and $\int_0^t \int_0^s h(\tau) d\tau = \int_0^t (t-s)h(s)$, we finish the proof by the local blow-up criterion by vorticity(see theorem 1 in [1]).

Repeating the same argument in the proof of the above theorem, we have the following theorem.

Theorem 2. Let u, f, H as in the previous theorem. For any relatively open set G containing H,

$$\int_0^{T^*} \left[(T^* - t) \| \nabla \tilde{\nabla} p(t) \|_{L^{\infty}(G)} + \sup_{s \le t} \| \omega_3 \|_{L^{\infty}(G)}(s) \right] dt = +\infty.$$

NAMKWON KIM

Proof. Multiplying (2.1) by $\xi |\tilde{\omega}|^{q-2} \tilde{\omega}$ and (2.2) by $\xi |\tilde{J}|^{q-2} \tilde{J}$ and integrating over Ω , we have

 $\sim 2a + 2$

$$\frac{1}{q}\frac{d}{dt}\tilde{A}^{q} \leq \frac{C^{2q+2}}{q} + \tilde{A}^{q-1}\tilde{B}.$$

$$\frac{1}{q}\frac{d}{dt}\tilde{B}^{q} \leq \frac{C^{2q+2}}{q} + \tilde{D}A_{3}\tilde{B}^{q-1} + \tilde{A}\|\tilde{\nabla}^{2}p\|_{L^{\infty}(W)}\tilde{B}^{q-1}.$$

Here, $\tilde{B} = (\int_{\Omega} |\tilde{J}|^q \xi dx)^{1/q}$ and A and D are as before. Following the same calculation as in the previous proof, we have

$$\tilde{A}(t) \le (C + \tilde{A}(0) + \int_0^t \int_0^s A_3 \tilde{D}) \exp \int_0^t \int_0^s \|\tilde{\nabla}^2 p\|_{L^{\infty}(W)}$$

Then, sending $q \to \infty$ again and using theorem 1 in [1], we arrive at the conclusion.

Theorem 1 and 2 are different criteria from theorem 2 in [8] where blow-up criterion by stronger norm of $\tilde{\omega}$ was developed.

REFERENCES

- [1] H. Bae, B. Jin, and N. Kim, On the localized blow-up of the 3D incompressible Euler equations, preprint, 2012
- [2] Beale J T, Kato T and Majda A 1984, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94, no. 1, pp. 61-66().
- [3] D. Chae, Incompressible Euler Equations: The Blow-up Problem and Related Results, in Handbook of Differential Equations: Evolutionary Equations, Elsevier, Volume 4, pp. 1-55, 2008.
- [4] D.Chae, On the finite-time singularities of the 3D incompressible Euler equations, Comm.Pure.Appl.Math.Vol.LX, 0597-0617(2007).
- [5] D. Chae, *Remarks on the blow-up criterion of the three-dimensional Euler equations*, Nonlinearity 18, no. 3, 1021-1029(2005).
- [6] P. Constantin, Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations, Comm. Math. Phys. 104, pp. 311-326(1986).
- [7] T. Kato, Nonstationary flows of viscous and ideal fluids in R, J. Func. Anal., 9, pp. 296-305(1972).
- [8] N. Kim, *Remarks on the blow-up of solutions for the 3-D Euler equations*, Differential and Integral equations, 14, no.2,129-140(2001).
- [9] G. Ponce, Remarks on a paper: "Remarks on the breakdown of smooth solutions for the 3-D Euler equations" Comm. Math. Phys. 94, no. 1, 61-66(1984) by J. T. Beale, T. Kato and A. Majda., Comm. Math. Phys. 98, pp. 349-353 (1985).
- [10] R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20(1975), pp. 32-43.

248