CRITERION FOR BLOW-UP IN THE EULER EQUATIONS VIA CERTAIN PHYSICAL QUANTITIES

NAMKWON KIM
Department of Mathematics, Chosun University, Kwangju, 501-759, Republic of Korea
E-mail address: kimnamkw@chosun. ac.kr

Abstract

We consider the (possible) finite time blow-up of the smooth solutions of the 3D incompressible Euler equations in a smooth domain or in \mathbf{R}^{3}. We derive blow-up criteria in terms of L^{∞} of the partial component of Hessian of the pressure together with partial component of the vorticity.

1. Introduction

Let Ω be \mathbf{R}^{3} or a smooth bounded domain in \mathbf{R}^{3}. We consider the Euler equations of incompressible fluid in Ω :

$$
\left\{\begin{array}{c}
u_{t}+(u \cdot \nabla) u+\nabla p=f \tag{1.1}\\
\operatorname{div} u=0
\end{array}\right.
$$

with initial velocity u_{0} and boundary condition $u \cdot n=0$. Here n is the unit outer normal vector to $\partial \Omega$.

It is known that if the initial velocity, $u_{0} \in H^{m}, m>5 / 2$, then there exists a unique smooth solution for the Euler equations up to some positive time(See [7], [10] and references therein). A natural question is then whether this solution quits to be smooth and thus quits to be a strong solution any more in a finite time. This question is also related with the regularity problem of the 3D incompressible Navier-Stokes equations[6]. There have been developed many criteria whether the solution blows up in a finite time. Especially, blow-up criteria in terms of vorticity, deformation tensor, and the Hessian of the pressure have been developed under various situations(See for example [2, 4, 5, 9] and [3]). Also, localization of these blowup criteria have been developed[1, 8]. Among others, blow-up criteria by pressure involve all components of the Hessian of the pressure until now.

Our aim here is developing blow-up criteria in terms of L^{∞} norm of some components of the Hessian of the pressure together with L^{∞} norm of some component of the vorticity. We shall derive differential inequalities for L^{q} norm of vorticity using certain equations for the product

Received by the editors November 19 2012; Accepted December 72012.
2010 Mathematics Subject Classification. 35Q30, 35K15.
Key words and phrases. Euler equations, blow-up, criterion.
This work is partially supported by Chosun university, 2007.
of the vorticity and the deformation tensor and apply the energy argument to those inequalities. This approach is already used in [1] to derive a criterion by L^{∞} norm of the Hessian of the pressure.

2. BLOW-UP CRITERIA

Let T^{*} be the blow-up time of a classical solution u for the Euler equations (1.1). The singular set for u at time $t=T^{*}$ is defined by the set of all $x \in \bar{\Omega}$ such that for any ball B centered at x,

$$
\liminf _{t \nearrow T^{*}}\|u(t)\|_{H^{m}(B \cap \Omega)}=\infty
$$

Let us denote the singular set by S. It is clear that S is a closed set in $\bar{\Omega}$. If $H \subset S$ is a bounded closed component of S, we call it an isolated singular set for u. Trivially, $\operatorname{dist}(H, S-H)>0$.

Let $\omega=\nabla \times u$ be the vorticity and $J=\omega \cdot \nabla u$. Then, taking a curl to the first equation in (1.1) and by direct calculation, for $0<t<T^{*}$

$$
\begin{align*}
\frac{\partial \omega}{\partial t}+(u \cdot \nabla) \omega & =J \tag{2.1}\\
\frac{\partial J}{\partial t}+(u \cdot \nabla) J & =-(\omega \cdot \nabla) \nabla p \tag{2.2}
\end{align*}
$$

Throughout this section, we denote $\tilde{\omega}=\left(\omega_{1}, \omega_{2}\right)$ and $\tilde{\nabla}=\left(\partial_{1}, \partial_{2}\right)$. We start with the following lemma first.

Lemma 1. Let $g \in C[0, a]$ and $A, B \in L^{1}[0, a]$ be nonnegative and

$$
\begin{equation*}
g(t)-g(0) \leq \int_{0}^{t} \int_{0}^{s}(A(\tau) g(\tau)+B(\tau)) d \tau d s, \quad t \in[0, a] \tag{2.3}
\end{equation*}
$$

Then g satisfies

$$
\begin{equation*}
g(t) \leq\left(g(0)+\int_{0}^{t} \int_{0}^{s} B\right) \exp \int_{0}^{t} \int_{0}^{s} A d \tau d s \tag{2.4}
\end{equation*}
$$

Proof. We shall show that for any $\epsilon>0$,

$$
g(t) \leq\left(g(0)+\int_{0}^{t} \int_{0}^{s} B+\epsilon\right) \exp \int_{0}^{t} \int_{0}^{s} A(\tau) d \tau d s
$$

For simplicity, let us denote $X(s)=\exp \int_{0}^{s} \int_{0}^{r} A(\tau) d \tau d r$. Suppose not. Then, since the LHS of the above is smaller than the RHS of the above at $t=0$, for some $\epsilon>0$, there would be a first time $b<a$ such that the equality holds in the above. However, at $t=b$, by (2.3),

$$
\begin{aligned}
g(b) & \leq \int_{0}^{b} \int_{0}^{t} A(s)\left[(g(0)+\epsilon) X(s)+X(s) \int_{0}^{s} \int_{0}^{r} B\right] \\
& +g(0)+\int_{0}^{b} \int_{0}^{t} B
\end{aligned}
$$

By integration by parts,

$$
\begin{aligned}
\int_{0}^{b} \int_{0}^{t} A(s) X(s) & =\left[\int_{0}^{t} A(s) X(t)-\int_{0}^{t}\left(\int_{0}^{s} A(\tau)\right)^{2} X(s)\right] \\
& \leq \int_{0}^{b} \int_{0}^{t} A(s) X(t) \\
& =X(b)-X(0)=\exp \int_{0}^{b} \int_{0}^{r} A(\tau) d \tau d r-1
\end{aligned}
$$

Similarly, by integration by parts,

$$
\begin{aligned}
\int_{0}^{t} A(s) X(s) \int_{0}^{s} \int_{0}^{r} B & =\int_{0}^{t} A(s) X(t) \int_{0}^{t} \int_{0}^{r} B \\
& -\int_{0}^{t}\left(\int_{0}^{s} A(\tau) d \tau\right)^{2} X(s) \int_{0}^{s} \int_{0}^{r} B \\
& -\int_{0}^{t} \int_{0}^{s} A(\tau) d \tau X(s) \int_{0}^{s} B \\
& \leq \int_{0}^{t} A(s) X(t) \int_{0}^{t} \int_{0}^{r} B
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{0}^{b} \int_{0}^{t} A(s) X(s) \int_{0}^{s} \int_{0}^{r} B & \leq \int_{0}^{b} \int_{0}^{t} A(s) X(t) \int_{0}^{t} \int_{0}^{r} B \\
& \leq X(b) \int_{0}^{b} \int_{0}^{r} B-\int_{0}^{b} X(t) \int_{0}^{t} B \\
& \leq X(b) \int_{0}^{b} \int_{0}^{r} B-\int_{0}^{b} \int_{0}^{t} B
\end{aligned}
$$

by $X(t) \geq 1$. Gathering these inequalities, we have

$$
g(b) \leq(g(0)+\epsilon) X(b)-\epsilon+X(b) \int_{0}^{b} \int_{0}^{r} B=g(b)-\epsilon
$$

Thus, we arrive at a contradiction and finish the proof.
Theorem 1. Let u be a smooth solution of (1.1), $f \in L^{\infty}\left(0, \infty ; H^{m}\right)$ a external force, H be an isolated singular set. For any relatively open set G containing H,

$$
\int_{0}^{T^{*}}\left[\left(T^{*}-t\right)\left\|\nabla \partial_{3} p(t)\right\|_{L^{\infty}(G)}+\sup _{s \leq t}\|\tilde{\omega}\|_{L^{\infty}(G)}(s)\right] d t=+\infty
$$

Proof. Without loss of generality, we can assume that there exist an (relatively) open smooth set $W \supset G, \operatorname{dist}\left(W^{c}, G\right)>0$. Let ξ be a smooth cutoff function such that $\xi=1$ on G and
$\xi=0$ on W^{c}. For convenience, let us denote

$$
A_{3}(t)=\left(\int_{\Omega}\left|\omega_{3}\right|^{q} \xi d x\right)^{1 / q}, \quad B_{3}(t)=\left(\int_{\Omega}\left|J_{3}\right|^{q} \xi d x\right)^{1 / q}
$$

$\tilde{D}=\left\|\tilde{\nabla} \partial_{3} p\right\|_{L^{\infty}(W)}$, and $D_{3}=\left\|\partial_{3}^{2} p\right\|_{L^{\infty}(W)}$. \tilde{A} is similarly defined with $\tilde{\omega}$. Multiplying the third component of (2.1) by $\xi\left|\omega_{3}\right|^{q-2} \omega_{3}$ and integrating over Ω, we have

$$
\begin{align*}
\frac{1}{q} \frac{d}{d t} \int_{\Omega}\left|\omega_{3}\right|^{q} \xi d x & =\frac{1}{q} \int_{\Omega}\left|\omega_{3}\right|^{q}(u \cdot \nabla) \xi d x+\int_{\Omega}\left|\omega_{3}\right|^{q-2} \omega_{3} J_{3} \xi d x \\
& \leq \frac{C}{q} \int_{W_{\Omega} \backslash G_{\Omega}}|\omega|^{q}|u| d x+\int_{\Omega}\left|\omega_{3}\right|^{q-1}\left|J_{3}\right| \xi d x \\
& \leq C C^{q+1} \frac{1}{q}\|u\|_{H^{m}\left(W_{\Omega} \backslash G_{\Omega}\right)}^{q+1}+A_{3}^{q-1} B_{3} . \tag{2.5}
\end{align*}
$$

Similarly, multiplying (2.2) by $\xi\left|J_{3}\right|^{q-2} J_{3}$ and integrating over Ω, we have

$$
\begin{align*}
\frac{1}{q} \frac{d}{d t} \int_{\Omega}\left|J_{3}\right|^{q} \xi d x & =\frac{1}{q} \int_{\Omega}\left|J_{3}\right|^{q}(u \cdot \nabla) \xi d x-\int_{\Omega}\left|J_{3}\right|^{q-2} J_{3}(\omega \cdot \nabla) \nabla_{3} p \xi d x \\
& \leq \frac{C}{q} \int_{W_{\Omega} \backslash G_{\Omega}}|J|^{q}|u| d x+\int_{\Omega}\left|J_{3}\right|^{q-1}\left[\left|\omega_{3}\right|\left|\partial_{3}^{2} p\right|+|\tilde{\omega}|\left|\tilde{\nabla} \partial_{3} p\right|\right] \xi d x \\
& \leq \frac{C}{q} C^{2 q+1}\|u\|_{H^{m}\left(W_{\Omega} \backslash G_{\Omega}\right)}^{2 q+1}+\left[\left\|\partial_{3}^{2} p\right\|_{L^{\infty}\left(W_{\Omega}\right)}\left(\int_{\Omega}\left|\omega_{3}\right|^{q} \xi d x\right)^{\frac{1}{q}}\right. \\
& +\tilde{A} \tilde{D}]\left(\int_{\Omega}\left|J_{3}\right|^{q} \xi d x\right)^{\frac{q-1}{q}} \\
& \leq \frac{C^{2 q+2}}{q}+D_{3} A_{3} B_{3}^{q-1}+\tilde{A} \tilde{D} B_{3}^{q-1} \tag{2.6}
\end{align*}
$$

From the above equation, we get

$$
\begin{aligned}
\left(B_{3}^{q}+C^{2 q}\right)^{\frac{q-1}{q}} \frac{d}{d t}\left(B_{3}^{q}+C^{2 q}\right)^{1 / q} & =\frac{1}{q} \frac{d}{d t} B_{3}^{q} \\
& \leq \frac{C^{2 q+2}}{q}+D_{3} A_{3} B_{3}^{q-1}+\tilde{A} \tilde{D} B_{3}^{q-1} \\
& \leq\left(\frac{C^{2}}{q}+D_{3} A_{3}+\tilde{A} \tilde{D}\right)\left(B_{3}^{q}+C^{2 q}\right)^{\frac{q-1}{q}}
\end{aligned}
$$

Therefore, applying the Gronwall lemma, we have

$$
\begin{equation*}
\left(B_{3}^{q}+C^{2 q}\right)^{1 / q}(t) \leq\left(B_{3}^{q}+C^{2 q}\right)^{1 / q}(0)+\int_{0}^{t}\left(\frac{C^{2}}{q}+D_{3} A_{3}+\tilde{A} \tilde{D}\right) \tag{2.7}
\end{equation*}
$$

Plugging the above into (2.5), we have

$$
\frac{1}{q} \frac{d}{d t} A_{3}^{q}(t) \leq \frac{1}{q} C^{2 q+2}+A_{3}^{q-1}\left(C+\int_{0}^{t} \tilde{A} \tilde{D}+\int_{0}^{t} D_{3} A_{3}\right)
$$

Then, we again have

$$
\begin{aligned}
\left(A_{3}^{q}+C^{2 q}\right)^{\frac{q-1}{q}} \frac{d}{d t}\left(A_{3}^{q}+C^{2 q}\right)^{\frac{1}{q}}= & \frac{1}{q} \frac{d}{d t} A_{3}^{q} \\
\leq & \frac{C^{2 q+2}}{q}+A_{3}^{q-1}\left(C+\int_{0}^{t} \tilde{A} \tilde{D}+\int_{0}^{t} D_{3} A_{3}\right) \\
\leq & \left(\frac{C^{2}}{q}+\int_{0}^{t} \tilde{A} \tilde{D}+\int_{0}^{t} D_{3}\left(A_{3}^{q}+C^{2 q}\right)^{1 / q}\right) \times \\
& \left(A_{3}^{q}+C^{2 q}\right)^{\frac{q-1}{q}}
\end{aligned}
$$

Subsequently, by the Gronwall lemma,

$$
\left(A_{3}^{q}+C^{2 q}\right)^{1 / q}(t) \leq\left(A_{3}^{q}+C^{2 q}\right)^{1 / q}(0)+\int_{0}^{t} \int_{0}^{s}\left(\frac{C^{2}}{q}+D_{3} A_{3}+\tilde{A} \tilde{D}\right)
$$

Here, we redefine C suitably large constant. C depends on u_{0}, T^{*}, and $\sup _{t}\|u\|_{H^{m}\left(W_{\Omega} \backslash G_{\Omega}\right)}(t)$ but can be chosen independent of q since $q>1$. Integrating the above and using (2.4), we have

$$
A_{3}(t) \leq\left(C+A_{3}(0)+\int_{0}^{t} \int_{0}^{s} \tilde{A} \tilde{D}\right) \exp \int_{0}^{t} \int_{0}^{s} D_{3}
$$

Letting $q \rightarrow \infty$, we arrive at

$$
\begin{aligned}
\left\|\omega_{3}\right\|_{L^{\infty}(G)}(t) \leq & \left(C+\left\|\omega_{3}\right\|_{L^{\infty}(W)}(0)+\int_{0}^{t} \int_{0}^{s}\|\tilde{\omega}\|_{L^{\infty}(W)}\left\|\tilde{\nabla} \nabla_{3} p\right\|_{L^{\infty}(W)}\right) \times \\
& \exp \int_{0}^{t} \int_{0}^{s}\left\|\nabla_{3}^{2} p\right\|_{L^{\infty}(W)}
\end{aligned}
$$

Since $\nabla^{2} p$ is also uniformly bounded on $W \backslash G$,

$$
\int_{0}^{t} \int_{0}^{s}\|\tilde{\omega}\|_{L^{\infty}(W)}\left\|\tilde{\nabla} \nabla_{3} p\right\|_{L^{\infty}(W)} \leq \sup _{s<t}\|\tilde{\omega}\|_{L^{\infty}(W)}(s) \int_{0}^{t} \int_{0}^{s}\left\|\tilde{\nabla} \nabla_{3} p\right\|_{L^{\infty}(W)}
$$

and $\int_{0}^{t} \int_{0}^{s} h(\tau) d \tau=\int_{0}^{t}(t-s) h(s)$, we finish the proof by the local blow-up criterion by vorticity(see theorem 1 in [1]).

Repeating the same argument in the proof of the above theorem, we have the following theorem.

Theorem 2. Let u, f, H as in the previous theorem. For any relatively open set G containing H,

$$
\int_{0}^{T^{*}}\left[\left(T^{*}-t\right)\|\nabla \tilde{\nabla} p(t)\|_{L^{\infty}(G)}+\sup _{s \leq t}\left\|\omega_{3}\right\|_{L^{\infty}(G)}(s)\right] d t=+\infty
$$

Proof. Multiplying (2.1) by $\xi|\tilde{\omega}|^{q-2} \tilde{\omega}$ and (2.2) by $\xi|\tilde{J}|^{q-2} \tilde{J}$ and integrating over Ω, we have

$$
\begin{aligned}
& \frac{1}{q} \frac{d}{d t} \tilde{A}^{q} \leq \frac{C^{2 q+2}}{q}+\tilde{A}^{q-1} \tilde{B} \\
& \frac{1}{q} \frac{d}{d t} \tilde{B}^{q} \leq \frac{C^{2 q+2}}{q}+\tilde{D} A_{3} \tilde{B}^{q-1}+\tilde{A}\left\|\tilde{\nabla}^{2} p\right\|_{L^{\infty}(W)} \tilde{B}^{q-1}
\end{aligned}
$$

Here, $\tilde{B}=\left(\int_{\Omega}|\tilde{J}|^{q} \xi d x\right)^{1 / q}$ and A and D are as before. Following the same calculation as in the previous proof, we have

$$
\tilde{A}(t) \leq\left(C+\tilde{A}(0)+\int_{0}^{t} \int_{0}^{s} A_{3} \tilde{D}\right) \exp \int_{0}^{t} \int_{0}^{s}\left\|\tilde{\nabla}^{2} p\right\|_{L^{\infty}(W)}
$$

Then, sending $q \rightarrow \infty$ again and using theorem 1 in [1], we arrive at the conclusion.
Theorem 1 and 2 are different criteria from theorem 2 in [8] where blow-up criterion by stronger norm of $\tilde{\omega}$ was developed.

REFERENCES

[1] H. Bae, B. Jin, and N. Kim, On the localized blow-up of the 3D incompressible Euler equations, preprint, 2012
[2] Beale J T, Kato T and Majda A 1984, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94, no. 1, pp. 61-66().
[3] D. Chae, Incompressible Euler Equations: The Blow-up Problem and Related Results, in Handbook of Differential Equations: Evolutionary Equations, Elsevier, Volume 4, pp. 1-55, 2008.
[4] D.Chae, On the finite-time singularities of the $3 D$ incompressible Euler equations, Comm.Pure.Appl.Math.Vol.LX, 0597-0617(2007).
[5] D. Chae, Remarks on the blow-up criterion of the three-dimensional Euler equations, Nonlinearity 18, no. 3, 1021-1029(2005).
[6] P. Constantin, Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations, Comm. Math. Phys. 104, pp. 311-326(1986).
[7] T. Kato, Nonstationary flows of viscous and ideal fluids in R, J. Func. Anal., 9, pp. 296-305(1972).
[8] N. Kim, Remarks on the blow-up of solutions for the 3-D Euler equations, Differential and Integral equations, 14, no.2,129-140(2001).
[9] G. Ponce, Remarks on a paper: "Remarks on the breakdown of smooth solutions for the 3-D Euler equations" Comm. Math. Phys. 94, no. 1, 61-66(1984) by J. T. Beale, T. Kato and A. Majda., Comm. Math. Phys. 98, pp. 349-353 (1985).
[10] R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20(1975), pp. 32-43.

