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ABSTRACT. We consider the (possible) finite time blow-up of the smooth solutions of the 3D
incompressible Euler equations in a smooth domain or in R3. We derive blow-up criteria in
terms of L∞ of the partial component of Hessian of the pressure together with partial compo-
nent of the vorticity.

1. INTRODUCTION

Let Ω be R3 or a smooth bounded domain in R3. We consider the Euler equations of
incompressible fluid in Ω: {

ut + (u · ∇)u+∇p = f,
divu = 0,

(1.1)

with initial velocity u0 and boundary condition u ·n = 0. Here n is the unit outer normal vector
to ∂Ω.

It is known that if the initial velocity, u0 ∈ Hm, m > 5/2, then there exists a unique
smooth solution for the Euler equations up to some positive time(See [7], [10] and references
therein). A natural question is then whether this solution quits to be smooth and thus quits to
be a strong solution any more in a finite time. This question is also related with the regularity
problem of the 3D incompressible Navier-Stokes equations[6]. There have been developed
many criteria whether the solution blows up in a finite time. Especially, blow-up criteria in
terms of vorticity, deformation tensor, and the Hessian of the pressure have been developed
under various situations(See for example [2, 4, 5, 9] and [3]). Also, localization of these blow-
up criteria have been developed[1, 8]. Among others, blow-up criteria by pressure involve all
components of the Hessian of the pressure until now.

Our aim here is developing blow-up criteria in terms of L∞ norm of some components of the
Hessian of the pressure together with L∞ norm of some component of the vorticity. We shall
derive differential inequalities for Lq norm of vorticity using certain equations for the product
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of the vorticity and the deformation tensor and apply the energy argument to those inequalities.
This approach is already used in [1] to derive a criterion by L∞ norm of the Hessian of the
pressure.

2. BLOW-UP CRITERIA

Let T ∗ be the blow-up time of a classical solution u for the Euler equations (1.1). The
singular set for u at time t = T ∗ is defined by the set of all x ∈ Ω such that for any ball B
centered at x,

lim inf
t↗T ∗

∥u(t)∥Hm(B∩Ω) = ∞.

Let us denote the singular set by S. It is clear that S is a closed set in Ω. IfH ⊂ S is a bounded
closed component of S, we call it an isolated singular set for u. Trivially, dist(H,S−H) > 0.

Let ω = ∇× u be the vorticity and J = ω · ∇u. Then, taking a curl to the first equation in
(1.1) and by direct calculation, for 0 < t < T ∗

∂ω

∂t
+ (u · ∇)ω = J, (2.1)

∂J

∂t
+ (u · ∇)J = −(ω · ∇)∇p. (2.2)

Throughout this section, we denote ω̃ = (ω1, ω2) and ∇̃ = (∂1, ∂2). We start with the follow-
ing lemma first.

Lemma 1. Let g ∈ C[0, a] and A,B ∈ L1[0, a] be nonnegative and

g(t)− g(0) ≤
∫ t

0

∫ s

0
(A(τ)g(τ) +B(τ)) dτds, t ∈ [0, a]. (2.3)

Then g satisfies

g(t) ≤
(
g(0) +

∫ t

0

∫ s

0
B

)
exp

∫ t

0

∫ s

0
Adτds. (2.4)

Proof. We shall show that for any ϵ > 0,

g(t) ≤
(
g(0) +

∫ t

0

∫ s

0
B + ϵ

)
exp

∫ t

0

∫ s

0
A(τ)dτds.

For simplicity, let us denote X(s) = exp
∫ s
0

∫ r
0 A(τ)dτdr. Suppose not. Then, since the LHS

of the above is smaller than the RHS of the above at t = 0, for some ϵ > 0, there would be a
first time b < a such that the equality holds in the above. However, at t = b, by (2.3),

g(b) ≤
∫ b

0

∫ t

0
A(s)

[
(g(0) + ϵ)X(s) +X(s)

∫ s

0

∫ r

0
B

]
+ g(0) +

∫ b

0

∫ t

0
B.
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By integration by parts,∫ b

0

∫ t

0
A(s)X(s) =

[∫ t

0
A(s)X(t)−

∫ t

0

(∫ s

0
A(τ)

)2

X(s)

]
≤
∫ b

0

∫ t

0
A(s)X(t)

= X(b)−X(0) = exp

∫ b

0

∫ r

0
A(τ)dτdr − 1,

Similarly, by integration by parts,∫ t

0
A(s)X(s)

∫ s

0

∫ r

0
B =

∫ t

0
A(s)X(t)

∫ t

0

∫ r

0
B

−
∫ t

0

(∫ s

0
A(τ)dτ

)2

X(s)

∫ s

0

∫ r

0
B

−
∫ t

0

∫ s

0
A(τ)dτX(s)

∫ s

0
B

≤
∫ t

0
A(s)X(t)

∫ t

0

∫ r

0
B.

Therefore, ∫ b

0

∫ t

0
A(s)X(s)

∫ s

0

∫ r

0
B ≤

∫ b

0

∫ t

0
A(s)X(t)

∫ t

0

∫ r

0
B

≤ X(b)

∫ b

0

∫ r

0
B −

∫ b

0
X(t)

∫ t

0
B

≤ X(b)

∫ b

0

∫ r

0
B −

∫ b

0

∫ t

0
B

by X(t) ≥ 1. Gathering these inequalities, we have

g(b) ≤ (g(0) + ϵ)X(b)− ϵ+X(b)

∫ b

0

∫ r

0
B = g(b)− ϵ.

Thus, we arrive at a contradiction and finish the proof. �

Theorem 1. Let u be a smooth solution of (1.1), f ∈ L∞(0,∞;Hm) a external force, H be
an isolated singular set. For any relatively open set G containing H ,∫ T ∗

0

[
(T ∗ − t)∥∇∂3p(t)∥L∞(G) + sup

s≤t
∥ω̃∥L∞(G)(s)

]
dt = +∞.

Proof. Without loss of generality, we can assume that there exist an (relatively) open smooth
set W ⊃ G, dist(W c, G) > 0. Let ξ be a smooth cutoff function such that ξ = 1 on G and
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ξ = 0 on W c. For convenience, let us denote

A3(t) = (

∫
Ω
|ω3|qξdx)1/q, B3(t) = (

∫
Ω
|J3|qξdx)1/q,

D̃ = ∥∇̃∂3p∥L∞(W ), and D3 = ∥∂23p∥L∞(W ). Ã is similarly defined with ω̃. Multiplying the
third component of (2.1) by ξ|ω3|q−2ω3 and integrating over Ω, we have

1

q

d

dt

∫
Ω
|ω3|qξdx =

1

q

∫
Ω
|ω3|q(u · ∇)ξdx+

∫
Ω
|ω3|q−2ω3J3ξdx

≤ C

q

∫
WΩ\GΩ

|ω|q|u|dx+

∫
Ω
|ω3|q−1|J3|ξdx

≤ CCq+1 1

q
∥u∥q+1

Hm(WΩ\GΩ)
+Aq−1

3 B3. (2.5)

Similarly, multiplying (2.2) by ξ|J3|q−2J3 and integrating over Ω, we have

1

q

d

dt

∫
Ω
|J3|qξdx =

1

q

∫
Ω
|J3|q(u · ∇)ξdx−

∫
Ω
|J3|q−2J3(ω · ∇)∇3pξdx

≤ C

q

∫
WΩ\GΩ

|J |q|u|dx+

∫
Ω
|J3|q−1[|ω3||∂23p|+ |ω̃||∇̃∂3p|]ξdx

≤ C

q
C2q+1∥u∥2q+1

Hm(WΩ\GΩ)
+

[
∥∂23p∥L∞(WΩ)(

∫
Ω
|ω3|qξdx)

1
q

+ÃD̃
]
(

∫
Ω
|J3|qξdx)

q−1
q

≤ C2q+2

q
+D3A3B

q−1
3 + ÃD̃Bq−1

3 . (2.6)

From the above equation, we get

(Bq
3 + C2q)

q−1
q
d

dt
(Bq

3 + C2q)1/q =
1

q

d

dt
Bq

3

≤ C2q+2

q
+D3A3B

q−1
3 + ÃD̃Bq−1

3

≤ (
C2

q
+D3A3 + ÃD̃)(Bq

3 + C2q)
q−1
q .

Therefore, applying the Gronwall lemma, we have

(Bq
3 + C2q)1/q(t) ≤ (Bq

3 + C2q)1/q(0) +

∫ t

0
(
C2

q
+D3A3 + ÃD̃). (2.7)

Plugging the above into (2.5), we have

1

q

d

dt
Aq

3(t) ≤
1

q
C2q+2 +Aq−1

3

(
C +

∫ t

0
ÃD̃ +

∫ t

0
D3A3

)
.
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Then, we again have

(Aq
3 + C2q)

q−1
q
d

dt
(Aq

3 + C2q)
1
q =

1

q

d

dt
Aq

3

≤ C2q+2

q
+Aq−1

3

(
C +

∫ t

0
ÃD̃ +

∫ t

0
D3A3

)
≤

(
C2

q
+

∫ t

0
ÃD̃ +

∫ t

0
D3(A

q
3 + C2q)1/q

)
×

(Aq
3 + C2q)

q−1
q .

Subsequently, by the Gronwall lemma,

(Aq
3 + C2q)1/q(t) ≤ (Aq

3 + C2q)1/q(0) +

∫ t

0

∫ s

0
(
C2

q
+D3A3 + ÃD̃).

Here, we redefine C suitably large constant. C depends on u0, T ∗, and supt ∥u∥Hm(WΩ\GΩ)(t)
but can be chosen independent of q since q > 1. Integrating the above and using (2.4), we have

A3(t) ≤ (C +A3(0) +

∫ t

0

∫ s

0
ÃD̃) exp

∫ t

0

∫ s

0
D3.

Letting q → ∞, we arrive at

∥ω3∥L∞(G)(t) ≤(C + ∥ω3∥L∞(W )(0) +

∫ t

0

∫ s

0
∥ω̃∥L∞(W )∥∇̃∇3p∥L∞(W ))×

exp

∫ t

0

∫ s

0
∥∇2

3p∥L∞(W ).

Since ∇2p is also uniformly bounded on W\G,∫ t

0

∫ s

0
∥ω̃∥L∞(W )∥∇̃∇3p∥L∞(W ) ≤ sup

s<t
∥ω̃∥L∞(W )(s)

∫ t

0

∫ s

0
∥∇̃∇3p∥L∞(W ),

and
∫ t
0

∫ s
0 h(τ)dτ =

∫ t
0 (t − s)h(s), we finish the proof by the local blow-up criterion by

vorticity(see theorem 1 in [1]). �

Repeating the same argument in the proof of the above theorem, we have the following
theorem.

Theorem 2. Let u, f , H as in the previous theorem. For any relatively open set G containing
H , ∫ T ∗

0

[
(T ∗ − t)∥∇∇̃p(t)∥L∞(G) + sup

s≤t
∥ω3∥L∞(G)(s)

]
dt = +∞.
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Proof. Multiplying (2.1) by ξ|ω̃|q−2ω̃ and (2.2) by ξ|J̃ |q−2J̃ and integrating over Ω, we have

1

q

d

dt
Ãq ≤ C2q+2

q
+ Ãq−1B̃.

1

q

d

dt
B̃q ≤ C2q+2

q
+ D̃A3B̃

q−1 + Ã∥∇̃2p∥L∞(W )B̃
q−1.

Here, B̃ = (
∫
Ω |J̃ |qξdx)1/q and A and D are as before. Following the same calculation as in

the previous proof, we have

Ã(t) ≤ (C + Ã(0) +

∫ t

0

∫ s

0
A3D̃) exp

∫ t

0

∫ s

0
∥∇̃2p∥L∞(W ).

Then, sending q → ∞ again and using theorem 1 in [1], we arrive at the conclusion. �
Theorem 1 and 2 are different criteria from theorem 2 in [8] where blow-up criterion by

stronger norm of ω̃ was developed.

REFERENCES

[1] H. Bae, B. Jin, and N. Kim, On the localized blow-up of the 3D incompressible Euler equations, preprint,
2012

[2] Beale J T, Kato T and Majda A 1984, Remarks on the breakdown of smooth solutions for the 3-D Euler
equations, Comm. Math. Phys. 94, no. 1, pp. 61-66().

[3] D. Chae, Incompressible Euler Equations: The Blow-up Problem and Related Results, in Handbook of Dif-
ferential Equations: Evolutionary Equations, Elsevier, Volume 4, pp. 1-55, 2008.

[4] D.Chae, On the finite-time singularities of the 3D incompressible Euler equations,
Comm.Pure.Appl.Math.Vol.LX, 0597-0617(2007).

[5] D. Chae, Remarks on the blow-up criterion of the three-dimensional Euler equations, Nonlinearity 18, no. 3,
1021-1029(2005).

[6] P. Constantin, Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations,
Comm. Math. Phys. 104, pp. 311-326(1986).

[7] T. Kato, Nonstationary flows of viscous and ideal fluids in R, J. Func. Anal., 9, pp. 296-305(1972).
[8] N. Kim, Remarks on the blow-up of solutions for the 3-D Euler equations, Differential and Integral equations,

14, no.2,129-140(2001).
[9] G. Ponce, Remarks on a paper: ”Remarks on the breakdown of smooth solutions for the 3-D Euler equations”

Comm. Math. Phys. 94, no. 1, 61-66(1984) by J. T. Beale, T. Kato and A. Majda., Comm. Math. Phys. 98, pp.
349-353 (1985).

[10] R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20(1975), pp. 32-43.


