Acknowledgement
Supported by : Catholic University of Daegu
References
- D. Andrade and J. M. Rivera, Exponential decay of non-linear wave equation with a viscoelastic boundary condition, Math. Methods Appl. Sci. 23 (2000), no. 1, 4161.
- J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-90. https://doi.org/10.1016/0022-247X(73)90121-2
- F. Conrad and O. Omer, On the stabilization of a flexible beam with a tip mass, SIAM J. Control Optim. 36 (1998), no. 6, 1962-1986. https://doi.org/10.1137/S0363012996302366
- M. Dahleh and W. Hopkins, Adaptive stabilization of single-input single-output delay systems, IEEE Trans. Automat. Control 31 (1986), no. 6, 577-579. https://doi.org/10.1109/TAC.1986.1104326
- M. Feckan, Free vibrations of beams on bearings with nonlinear elastic responses, J. Differential Equations 154 (1999), no. 1, 5572.
- E. Feireisl, Nonzero time periodic solutions to an equation of Petrovsky type with non-linear boundary condition: slow oscillations of beams on elastic bearings, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 1, 133-146.
- B. Z. Guo and W. Guo, Adaptive stabilization for a Kirchhoff-type nonlinear beam under boundary output feedback control, Nonlinear Anal. 66 (2007), no. 2, 427-441. https://doi.org/10.1016/j.na.2005.11.037
- B. Z. Guo and Z. H. Luo, Initial-boundary value problem and exponential decay for a flexible-beam vibration with gain adaptive direct strain feedback control, Nonlinear Anal. 27 (1996), no. 3, 353-365. https://doi.org/10.1016/0362-546X(95)00064-3
- M. Kirane and N. E. Tatar, A memory type boundary stabilization of a mildly damped wave equation, Electron. J. Qual. Theory Differ. Equ. 1999 (1999), no. 6, 1-7.
- I. Lasiecka, Exponential decay rates for the solutions of Euler-Bernoulli equations with boundary dissipation occurring in the moments only, J. Differential Equations 95 (1992), no. 1, 169-182. https://doi.org/10.1016/0022-0396(92)90048-R
- J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972.
- H. Ma, Uniform decay rates for the solutions to the Euler-Bernoulli plate equation with boundary feedback via bending moments, Differential Integral Equations 5 (1992), 1121-1150.
- T. F. Ma, Boundary stabilization for a non-linear beam on elastic bearings, Math. Methods Appl. Sci. 24 (2001), 583-594. https://doi.org/10.1002/mma.230
- J. Y. Park, Y. H. Kang, and J. A. Kim, Existence and exponential stability for a Euler- Bernoulli beam equation with memory and boundary output feedback control term, Acta Appl. Math. 104 (2008), no. 3, 287-301. https://doi.org/10.1007/s10440-008-9257-8
- J. Y. Park and J. A. Kim, Existence and uniform decay for Euler-Bernoulli beam equa- tion with memory term, Math. Methods Appl. Sci. 27 (2004), no. 14, 1629-1640. https://doi.org/10.1002/mma.512
- S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations 135 (1997), no. 2, 299314.
- M. L. Santos, Asymptotic behaviour of solutions to wave equations with a memory condition at the boundary, Electron. J. Differential Equations 2001 (2001), no. 73, 1-11.
Cited by
- Uniform Decay for Solutions of an Axially Moving Viscoelastic Beam vol.75, pp.3, 2017, https://doi.org/10.1007/s00245-016-9334-8
- Control of a riser through the dynamic of the vessel vol.95, pp.9, 2016, https://doi.org/10.1080/00036811.2015.1080249
- Vibration Control of a Viscoelastic Translational Euler-Bernoulli Beam 2017, https://doi.org/10.1007/s10883-017-9364-9
- Control and exponential stabilization for the equation of an axially moving viscoelastic strip 2017, https://doi.org/10.1002/mma.4452
- Control of a viscoelastic translational Euler-Bernoulli beam vol.40, pp.1, 2017, https://doi.org/10.1002/mma.3985
- BOUNDARY CONTROL AND STABILIZATION OF AN AXIALLY MOVING VISCOELASTIC STRING UNDER A BOUNDARY DISTURBANCE vol.22, pp.6, 2017, https://doi.org/10.3846/13926292.2017.1376295
- General decay of energy to a nonlinear viscoelastic two-dimensional beam pp.1573-2754, 2018, https://doi.org/10.1007/s10483-018-2389-6
- Stabilization of a viscoelastic rotating Euler-Bernoulli beam vol.41, pp.8, 2018, https://doi.org/10.1002/mma.4793