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GENERALIZED STABILITY OF EULER-LAGRANGE
TYPE QUADRATIC MAPPINGS

Kil-Woung Jun * and Jeong-Ha Oh **

Abstract. In this paper, we investigate the generalized Hyers–
Ulam–Rasssias stability of the following Euler-Lagrange type qua-
dratic functional equation f(ax+by+cz)+f(ax+by−cz)+f(ax−
by + cz) + f(ax− by − cz) = 4a2f(x) + 4b2f(y) + 4c2f(z).

1. Introduction

In 1940, S. M. Ulam [12] gave a talk before the Mathematics Club of
the University of Wisconsin in which he discussed a number of unsolved
problems. Among these was the following question concerning the sta-
bility of homomorphisms. Let G be a group and let G′ be a metric group
with metric ρ(·, ·). Given ε > 0, does there exist a δ > 0 such that if
f : G → G′ satisfies ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then a
homomorphism h : G → G′ exists with ρ(f(x), h(x)) < ε for all x ∈ G?

In 1941, D. H. Hyers [3] considered the case of approximately additive
mappings f : E → E′, where E and E′ are Banach spaces and f satisfies
Hyers inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit L(x) = limn→∞
f(2nx)

2n

exists for all x ∈ E and that L : E → E′ is the unique additive mapping
satisfying

‖f(x)− L(x)‖ ≤ ε.

Let E1 and E2 be real vector spaces. A function f : E1 → E2, there
exists a quadratic function if and only if f is a solution function of the
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quadratic functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y).(1.1)

A stability problem for the quadratic functional equation (1.1) was
solved by F. Skof [11] for mapping f : E1 → E2, where E1 is a normed
space and E2 is a Banach space.

In 1978, Th. M. Rassias [7] provided a generalization of Hyers’ Theo-
rem which allows the Cauchy difference to be unbounded. S. Czerwik [2]
proved the Hyers-Ulam-Rassias stability of quadratic functional equa-
tion (1.1). Let E1 and E2 be a real normed space and a real Banach
space, respectively, and let p 6= 2 be a positive constant. If a function
f : E1 → E2 satisfies the inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for some ε > 0 and for all x, y ∈ E1, then there exists a unique quadratic
function q : E1 → E2 such that

‖f(x)− q(x)‖ ≤ 2ε

|4− 2p|‖x‖
p

for all x ∈ G. In partiqular , we note that J.M. Rassias introduced
the Euler-Lagrange quadratic mappings, motivated from the following
pertinent algebraic equation

|ax + by|2 + |bx− ay|2 = (a2 + b2)[|x|2 + |y|2].(1.2)

Thus the second author of this paper introduced ad investigated the sta-
bility problem of Ulam for the relative Euler-Lagrange functional equa-
tion

f(ax + by) + f(bx− ay) = (a2 + b2)[f(x) + f(y)](1.3)

in the publications[8-10].
Recently, S.M Jung [5] and J. Bae, K. Jun and S. Jung [1] have

generalized the equation (1.1) to

f(x + y + z) + f(x− y + z) + f(x + y − z) + f(x− y − z)
= 4f(x) + 4f(y) + 4f(z)(1.4)

and then have investigated the general solution and the stability problem
for the functional equation.

Now, we consider the following functional equations

f(ax + by + cz) + f(ax + by − cz)
+ f(ax− by + cz) + f(ax− by − cz)(1.5)
= 4a2f(x) + 4b2f(y) + 4c2f(z),
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where a, b, c 6= 0 are real numbers.
In this paper, we will establish the general solution and the gener-

alized Hyers-Ulam-Rassias stability problem for the equation (1.5) in
Banach spaces.

2. Euler-Lagrange type quadratic mapping in Banach spaces

Lemma 2.1. Let X and Y be vector spaces. If a mapping f : X → Y
satisfies f(0) = 0 and

f(ax + by + cz) + f(ax + by − cz)
+ f(ax− by + cz) + f(ax− by − cz)(2.1)
= 4a2f(x) + 4b2f(y) + 4c2f(z)

for all x, y, z ∈ X, then the mapping f is quadratic and f(λnx) =
λ2nf(x), where λ = a, b or c.

Proof. Letting x = y in (2.1), we get

f((a + b)x + cz) + f((a + b)x− cz)
+ f((a− b)x + cz) + f((a− b)x− cz)(2.2)
= 4a2f(x) + 4b2f(x) + 4c2f(z)

for all x, z ∈ X. Setting y = −x in (2.1), we obtain

f((a− b)x + cz) + f((a− b)x− cz)
+ f((a + b)x + cz) + f((a + b)x− cz)(2.3)
= 4a2f(x) + 4b2f(−x) + 4c2f(z).

By (2.2) and (2.3), we conclude that f is even. And by setting y = 0
and z = 0 in (2.1), we get f(ax) = a2f(x) for all x ∈ X. So, it is easy
to verify f(anx) = a2nf(x) by induction. Similarly, we have the identity
for b and c. Now, substituting 0 for z in (2.1), one obtains

f(ax + by) + f(ax− by) = 2a2f(x) + 2b2f(y)
= 2f(ax) + 2f(by).

for all x, y ∈ X. Hence f is quadratic.

The mapping f : X → Y given in the statement of Lemma 2.1 is
called an Euler-Lagrange type quadratic mapping. Putting z = 0 in
(2.1) with a = 1 = b, we get the quadratic mapping f(x+y)+f(x−y) =
2f(x) + 2f(y).
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From now on, Let X and Y be a normed vector space and a Banach
space, respectively.

For a given mapping f : X → Y , we define

Df(x, y, z) := f(ax + by + cz) + f(ax + by − cz) + f(ax− by + cz)
+ f(ax− by − cz)− 4a2f(x)− 4b2f(y)− 4c2f(z)

for all x, y, z ∈ X

Theorem 2.2. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function φ : X3 → [0,∞) such that

Φ(x, y, z) :=
∞∑

j=1

a2jφ
( x

aj
,

y

aj
,

z

aj

)
< ∞,(2.4)

‖Df(x, y, z)‖ ≤ φ(x, y, z)(2.5)

for all x, y, z ∈ X. Then there exists a unique Euler-Lagrange type
quadratic mapping Q : X → Y such that DQ(x, y, z) = 0 and

‖f(x)−Q(x)‖ ≤ 1
4a2

Φ(x, 0, 0)(2.6)

for all x ∈ X.

Proof. Letting y = 0 and z = 0 in (2.5), we get

‖f(ax)− a2f(x)‖ ≤ 1
4
φ(x, 0, 0)

for all x ∈ X. So
∥∥∥f(x)− a2f(

x

a
)
∥∥∥ ≤ 1

4
φ
(x

a
, 0, 0

)

for all x ∈ X. Hence
∥∥∥a2lf

( x

al

)− a2mf
( x

am

)∥∥∥ ≤
m∑

j=l+1

∥∥∥a2(j−1)f
( x

aj−1

)− a2jf
( x

aj

)∥∥∥

≤
m∑

j=l+1

1
4
a2(j−1)φ

( x

aj
, 0, 0

)
(2.7)

for all x ∈ X. It means that a sequence {a2nf( x
an )} is Cauchy for all

x ∈ X. Since Y is complete, the sequence {a2nf( x
an )} converges. So one

can define a mapping Q : X → Y by Q(x) := limn→∞ a2nf( x
an ) for all

x ∈ X.
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By (2.4) and (2.5),

‖DQ(x, y, z)‖ = lim
n→∞ a2n

∥∥∥Df
( x

an
,

y

an
,

z

an

)∥∥∥

≤ lim
n→∞ a2nφ

( x

an
,

y

an
,

z

an

)
= 0

for all x, y, z ∈ X. So DQ(x, y, z) = 0. By Lemma 2.1, the mapping
Q : X → Y is quadratic.

Moreover, letting l = 0 and passing the limit m →∞ in (2.7), we get
the approximation (2.6) of f by Q.

Now, let Q′ : X −→ Y be another quadratic mapping satisfying (2.6).
Then we obtain

‖Q(x)−Q′(x)‖ = a2n
∥∥∥Q

( x

an

)−Q
( x

an

)∥∥∥

≤ a2n
[∥∥∥Q

( x

an

)− f
( x

an

)∥∥∥ +
∥∥∥Q′( x

an

)− f
( x

an

)∥∥∥
]

≤ 1
2
a2(n−1)Φ

( x

an
, 0, 0

)
,

which tends to zero as n → ∞. So we can conclude that Q(x) = Q′(x)
for all x ∈ X. This proves the uniqueness of Q. Hence the mapping
Q : X → Y is a unique quadratic mapping satisfying (2.6).

Corollary 2.3. Let p and θ be positive real numbers such that
either p > 2 and |a| > 1 or p < 2 and |a| < 1, and let f : X → Y be a
mapping satisfying f(0) = 0 and

‖Df(x, y, z)‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p),(2.8)

for all x, y, z ∈ X. Then there exists a unique Euler-Lagrange type
quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ θ · ‖x‖p

4(|a|p − a2)
(2.9)

for all x ∈ X.

Proof. Define φ(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p), and apply Theorem
2.2.

Theorem 2.4. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function φ : X3 → [0,∞) such that

Φ(x, y, z) :=
∞∑

j=0

1
a2j

φ(ajx, ajy, ajz) < ∞,(2.10)

‖Df(x, y, z)‖ ≤ φ(x, y, z)(2.11)
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for all x, y, z ∈ X. Then there exists a unique Euler-Lagrange type
quadratic mapping Q : X → Y such that DQ(x, y, z) = 0 and

‖f(x)−Q(x)‖ ≤ 1
4a2

Φ(x, 0, 0)(2.12)

for all x ∈ X.

Proof. Letting y = 0 and z = 0 in (2.11), we get

‖f(ax)− a2f(x)‖ ≤ 1
4
φ(x, 0, 0)

for all x ∈ X. So
∥∥∥f(x)− 1

a2
f(ax)

∥∥∥ ≤ 1
4a2

φ(x, 0, 0)

for all x ∈ X.
Hence

∥∥∥ 1
a2l

f(alx)− 1
a2m

f(amx)
∥∥∥ ≤

m∑

j=l+1

∥∥∥ 1
a2(j−1)

f(aj−1x)− 1
a2j

f(ajx)
∥∥∥

≤
m∑

j=l+1

1
4a2j

φ(aj−1x, 0, 0)(2.13)

for all x ∈ X. It means that a sequence { 1
a2n f(anx)} is Cauchy for all

x ∈ X. Since Y is complete, the sequence { 1
a2n f(anx)} converges. So

one can define a mapping Q : X → Y by Q(x) := limn→∞ 1
a2n f(anx) for

all x ∈ X.
By (2.10) and (2.11),

‖DQ(x, y, z)‖ = lim
n→∞

1
a2n

‖Df(anx, any, anz)‖

≤ lim
n→∞

1
a2n

φ(anx, any, anz) = 0

for all x, y, z ∈ X. So DQ(x, y, z) = 0. By Lemma 2.1, the mapping
Q : X → Y is a quadratic.

Moreover, letting l = 0 and passing the limit m → ∞ in (2.13), we
get the approximation (2.12) of f by Q.
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Now, let Q′ : X −→ Y be another quadratic mapping satisfying
(2.12) . Then we obtain

‖Q(x)−Q′(x)‖ =
1

a2n
‖Q(anx)−Q′(anx)‖

≤ 1
a2n

[‖Q(anx)− f(anx)‖+ ‖Q′(anx)− f(anx)‖]

≤ 1
2a2(n+1)

Φ(anx, 0, 0),

which tends to zero as n → ∞. So we can conclude that Q(x) = Q′(x)
for all x ∈ X. This proves the uniqueness of Q. Hence the mapping
Q : X → Y is a unique quadratic mapping satisfying (2.12).

Corollary 2.5. Let p and θ be positive real numbers with either
p < 2 and |a| > 1 or p > 2 and |a| < 1, and let f : X → Y be a mapping
satisfying f(0) = 0 and

‖Df(x, y, z)‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p),(2.14)

for all x, y, z ∈ X. Then there exists a unique Euler-Lagrange type
quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ θ · ‖x‖p

4(a2 − |a|p)(2.15)

for all x ∈ X.

Proof. Define φ(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p), and apply Theorem
2.4.

Corollary 2.6. Let f : X → Y be a mapping satisfying f(0) = 0
for which there exists a nonnegative number θ such that

‖Df(x, y, z)‖ ≤ θ(2.16)

for all x, y, z ∈ X. If |a| 6= 1, then there exists a unique Euler-Lagrange
type quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ θ

4|1− a2|(2.17)

for all x ∈ X.

Proof. Define φ(x, y, z) = θ, and apply Theorem 2.2 and Theorem
2.4 .
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