GENERALIZED STABILITY OF EULER-LAGRANGE TYPE QUADRATIC MAPPINGS

Kil-Woung Jun * and Jeong-Ha Oh **

Abstract. In this paper, we investigate the generalized Hyers-Ulam-Rasssias stability of the following Euler-Lagrange type quadratic functional equation $f(a x+b y+c z)+f(a x+b y-c z)+f(a x-$ $b y+c z)+f(a x-b y-c z)=4 a^{2} f(x)+4 b^{2} f(y)+4 c^{2} f(z)$.

1. Introduction

In 1940 , S. M. Ulam [12] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms. Let G be a group and let G^{\prime} be a metric group with metric $\rho(\cdot, \cdot)$. Given $\epsilon>0$, does there exist $a \delta>0$ such that if $f: G \rightarrow G^{\prime}$ satisfies $\rho(f(x y), f(x) f(y))<\delta$ for all $x, y \in G$, then a homomorphism $h: G \rightarrow G^{\prime}$ exists with $\rho(f(x), h(x))<\epsilon$ for all $x \in G$?

In 1941, D. H. Hyers [3] considered the case of approximately additive mappings $f: E \rightarrow E^{\prime}$, where E and E^{\prime} are Banach spaces and f satisfies Hyers inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in E$. It was shown that the limit $L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in E$ and that $L: E \rightarrow E^{\prime}$ is the unique additive mapping satisfying

$$
\|f(x)-L(x)\| \leq \epsilon
$$

Let E_{1} and E_{2} be real vector spaces. A function $f: E_{1} \rightarrow E_{2}$, there exists a quadratic function if and only if f is a solution function of the

[^0]quadratic functional equation
\[

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) . \tag{1.1}
\end{equation*}
$$

\]

A stability problem for the quadratic functional equation (1.1) was solved by F. Skof [11] for mapping $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space.

In 1978, Th. M. Rassias [7] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded. S. Czerwik [2] proved the Hyers-Ulam-Rassias stability of quadratic functional equation (1.1). Let E_{1} and E_{2} be a real normed space and a real Banach space, respectively, and let $p \neq 2$ be a positive constant. If a function $f: E_{1} \rightarrow E_{2}$ satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for some $\epsilon>0$ and for all $x, y \in E_{1}$, then there exists a unique quadratic function $q: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-q(x)\| \leq \frac{2 \epsilon}{\left|4-2^{p}\right|}\|x\|^{p}
$$

for all $x \in G$. In partiqular, we note that J.M. Rassias introduced the Euler-Lagrange quadratic mappings, motivated from the following pertinent algebraic equation

$$
\begin{equation*}
|a x+b y|^{2}+|b x-a y|^{2}=\left(a^{2}+b^{2}\right)\left[|x|^{2}+|y|^{2}\right] . \tag{1.2}
\end{equation*}
$$

Thus the second author of this paper introduced ad investigated the stability problem of Ulam for the relative Euler-Lagrange functional equation

$$
\begin{equation*}
f(a x+b y)+f(b x-a y)=\left(a^{2}+b^{2}\right)[f(x)+f(y)] \tag{1.3}
\end{equation*}
$$

in the publications[8-10].
Recently, S.M Jung [5] and J. Bae, K. Jun and S. Jung [1] have generalized the equation (1.1) to

$$
\begin{align*}
f(x+y+z) & +f(x-y+z)+f(x+y-z)+f(x-y-z) \\
& =4 f(x)+4 f(y)+4 f(z)
\end{align*}
$$

and then have investigated the general solution and the stability problem for the functional equation.

Now, we consider the following functional equations

$$
\begin{align*}
f(a x+b y+c z) & +f(a x+b y-c z) \\
& +f(a x-b y+c z)+f(a x-b y-c z) \tag{1.5}\\
& =4 a^{2} f(x)+4 b^{2} f(y)+4 c^{2} f(z),
\end{align*}
$$

where $a, b, c \neq 0$ are real numbers.
In this paper, we will establish the general solution and the generalized Hyers-Ulam-Rassias stability problem for the equation (1.5) in Banach spaces.

2. Euler-Lagrange type quadratic mapping in Banach spaces

Lemma 2.1. Let X and Y be vector spaces. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{align*}
f(a x+b y+c z) & +f(a x+b y-c z) \\
& +f(a x-b y+c z)+f(a x-b y-c z) \tag{2.1}\\
& =4 a^{2} f(x)+4 b^{2} f(y)+4 c^{2} f(z)
\end{align*}
$$

for all $x, y, z \in X$, then the mapping f is quadratic and $f\left(\lambda^{n} x\right)=$ $\lambda^{2 n} f(x)$, where $\lambda=a, b$ or c.

Proof. Letting $x=y$ in (2.1), we get

$$
\begin{align*}
f((a+b) x+c z) & +f((a+b) x-c z) \\
& +f((a-b) x+c z)+f((a-b) x-c z) \tag{2.2}\\
& =4 a^{2} f(x)+4 b^{2} f(x)+4 c^{2} f(z)
\end{align*}
$$

for all $x, z \in X$. Setting $y=-x$ in (2.1), we obtain

$$
\begin{align*}
f((a-b) x+c z) & +f((a-b) x-c z) \\
& +f((a+b) x+c z)+f((a+b) x-c z) \tag{2.3}\\
& =4 a^{2} f(x)+4 b^{2} f(-x)+4 c^{2} f(z) .
\end{align*}
$$

By (2.2) and (2.3), we conclude that f is even. And by setting $y=0$ and $z=0$ in (2.1), we get $f(a x)=a^{2} f(x)$ for all $x \in X$. So, it is easy to verify $f\left(a^{n} x\right)=a^{2 n} f(x)$ by induction. Similarly, we have the identity for b and c. Now, substituting 0 for z in (2.1), one obtains

$$
\begin{aligned}
f(a x+b y)+f(a x-b y) & =2 a^{2} f(x)+2 b^{2} f(y) \\
& =2 f(a x)+2 f(b y)
\end{aligned}
$$

for all $x, y \in X$. Hence f is quadratic.
The mapping $f: X \rightarrow Y$ given in the statement of Lemma 2.1 is called an Euler-Lagrange type quadratic mapping. Putting $z=0$ in (2.1) with $a=1=b$, we get the quadratic mapping $f(x+y)+f(x-y)=$ $2 f(x)+2 f(y)$.

From now on, Let X and Y be a normed vector space and a Banach space, respectively.

For a given mapping $f: X \rightarrow Y$, we define

$$
\begin{aligned}
D f(x, y, z) & :=f(a x+b y+c z)+f(a x+b y-c z)+f(a x-b y+c z) \\
& +f(a x-b y-c z)-4 a^{2} f(x)-4 b^{2} f(y)-4 c^{2} f(z)
\end{aligned}
$$

for all $x, y, z \in X$
THEOREM 2.2. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\phi: X^{3} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\Phi(x, y, z):=\sum_{j=1}^{\infty} a^{2 j} \phi\left(\frac{x}{a^{j}}, \frac{y}{a^{j}}, \frac{z}{a^{j}}\right)<\infty \tag{2.4}\\
\|D f(x, y, z)\| \leq \phi(x, y, z) \tag{2.5}
\end{gather*}
$$

for all $x, y, z \in X$. Then there exists a unique Euler-Lagrange type quadratic mapping $Q: X \rightarrow Y$ such that $D Q(x, y, z)=0$ and

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{4 a^{2}} \Phi(x, 0,0) \tag{2.6}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=0$ and $z=0$ in (2.5), we get

$$
\left\|f(a x)-a^{2} f(x)\right\| \leq \frac{1}{4} \phi(x, 0,0)
$$

for all $x \in X$. So

$$
\left\|f(x)-a^{2} f\left(\frac{x}{a}\right)\right\| \leq \frac{1}{4} \phi\left(\frac{x}{a}, 0,0\right)
$$

for all $x \in X$. Hence

$$
\begin{aligned}
\left\|a^{2 l} f\left(\frac{x}{a^{l}}\right)-a^{2 m} f\left(\frac{x}{a^{m}}\right)\right\| & \leq \sum_{j=l+1}^{m}\left\|a^{2(j-1)} f\left(\frac{x}{a^{j-1}}\right)-a^{2 j} f\left(\frac{x}{a^{j}}\right)\right\| \\
& \leq \sum_{j=l+1}^{m} \frac{1}{4} a^{2(j-1)} \phi\left(\frac{x}{a^{j}}, 0,0\right)
\end{aligned}
$$

for all $x \in X$. It means that a sequence $\left\{a^{2 n} f\left(\frac{x}{a^{n}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{a^{2 n} f\left(\frac{x}{a^{n}}\right)\right\}$ converges. So one can define a mapping $Q: X \rightarrow Y$ by $Q(x):=\lim _{n \rightarrow \infty} a^{2 n} f\left(\frac{x}{a^{n}}\right)$ for all $x \in X$.

By (2.4) and (2.5),

$$
\begin{aligned}
\|D Q(x, y, z)\| & =\lim _{n \rightarrow \infty} a^{2 n}\left\|D f\left(\frac{x}{a^{n}}, \frac{y}{a^{n}}, \frac{z}{a^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} a^{2 n} \phi\left(\frac{x}{a^{n}}, \frac{y}{a^{n}}, \frac{z}{a^{n}}\right)=0
\end{aligned}
$$

for all $x, y, z \in X$. So $D Q(x, y, z)=0$. By Lemma 2.1, the mapping $Q: X \rightarrow Y$ is quadratic.

Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.7), we get the approximation (2.6) of f by Q.

Now, let $Q^{\prime}: X \longrightarrow Y$ be another quadratic mapping satisfying (2.6). Then we obtain

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\| & =a^{2 n}\left\|Q\left(\frac{x}{a^{n}}\right)-Q\left(\frac{x}{a^{n}}\right)\right\| \\
& \leq a^{2 n}\left[\left\|Q\left(\frac{x}{a^{n}}\right)-f\left(\frac{x}{a^{n}}\right)\right\|+\left\|Q^{\prime}\left(\frac{x}{a^{n}}\right)-f\left(\frac{x}{a^{n}}\right)\right\|\right] \\
& \leq \frac{1}{2} a^{2(n-1)} \Phi\left(\frac{x}{a^{n}}, 0,0\right)
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$. So we can conclude that $Q(x)=Q^{\prime}(x)$ for all $x \in X$. This proves the uniqueness of Q. Hence the mapping $Q: X \rightarrow Y$ is a unique quadratic mapping satisfying (2.6).

Corollary 2.3. Let p and θ be positive real numbers such that either $p>2$ and $|a|>1$ or $p<2$ and $|a|<1$, and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{equation*}
\|D f(x, y, z)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \tag{2.8}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique Euler-Lagrange type quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\theta \cdot\|x\|^{p}}{4\left(|a|^{p}-a^{2}\right)} \tag{2.9}
\end{equation*}
$$

for all $x \in X$.
Proof. Define $\phi(x, y, z)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$, and apply Theorem 2.2.

Theorem 2.4. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\phi: X^{3} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\Phi(x, y, z):=\sum_{j=0}^{\infty} \frac{1}{a^{2 j}} \phi\left(a^{j} x, a^{j} y, a^{j} z\right)<\infty, \tag{2.10}\\
\|D f(x, y, z)\| \leq \phi(x, y, z) \tag{2.11}
\end{gather*}
$$

for all $x, y, z \in X$. Then there exists a unique Euler-Lagrange type quadratic mapping $Q: X \rightarrow Y$ such that $D Q(x, y, z)=0$ and

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{4 a^{2}} \Phi(x, 0,0) \tag{2.12}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=0$ and $z=0$ in (2.11), we get

$$
\left\|f(a x)-a^{2} f(x)\right\| \leq \frac{1}{4} \phi(x, 0,0)
$$

for all $x \in X$. So

$$
\left\|f(x)-\frac{1}{a^{2}} f(a x)\right\| \leq \frac{1}{4 a^{2}} \phi(x, 0,0)
$$

for all $x \in X$.
Hence

$$
\begin{align*}
\left\|\frac{1}{a^{2 l}} f\left(a^{l} x\right)-\frac{1}{a^{2 m}} f\left(a^{m} x\right)\right\| & \leq \sum_{j=l+1}^{m}\left\|\frac{1}{a^{2(j-1)}} f\left(a^{j-1} x\right)-\frac{1}{a^{2 j}} f\left(a^{j} x\right)\right\| \\
& \leq \sum_{j=l+1}^{m} \frac{1}{4 a^{2 j}} \phi\left(a^{j-1} x, 0,0\right) \tag{2.13}
\end{align*}
$$

for all $x \in X$. It means that a sequence $\left\{\frac{1}{a^{2 n}} f\left(a^{n} x\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{a^{2 n}} f\left(a^{n} x\right)\right\}$ converges. So one can define a mapping $Q: X \rightarrow Y$ by $Q(x):=\lim _{n \rightarrow \infty} \frac{1}{a^{2 n}} f\left(a^{n} x\right)$ for all $x \in X$.

By (2.10) and (2.11),

$$
\begin{aligned}
\|D Q(x, y, z)\| & =\lim _{n \rightarrow \infty} \frac{1}{a^{2 n}}\left\|D f\left(a^{n} x, a^{n} y, a^{n} z\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{a^{2 n}} \phi\left(a^{n} x, a^{n} y, a^{n} z\right)=0
\end{aligned}
$$

for all $x, y, z \in X$. So $D Q(x, y, z)=0$. By Lemma 2.1, the mapping $Q: X \rightarrow Y$ is a quadratic.

Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.13), we get the approximation (2.12) of f by Q.

Now, let $Q^{\prime}: X \longrightarrow Y$ be another quadratic mapping satisfying (2.12) . Then we obtain

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\| & =\frac{1}{a^{2 n}}\left\|Q\left(a^{n} x\right)-Q^{\prime}\left(a^{n} x\right)\right\| \\
& \leq \frac{1}{a^{2 n}}\left[\left\|Q\left(a^{n} x\right)-f\left(a^{n} x\right)\right\|+\left\|Q^{\prime}\left(a^{n} x\right)-f\left(a^{n} x\right)\right\|\right] \\
& \leq \frac{1}{2 a^{2(n+1)}} \Phi\left(a^{n} x, 0,0\right)
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$. So we can conclude that $Q(x)=Q^{\prime}(x)$ for all $x \in X$. This proves the uniqueness of Q. Hence the mapping $Q: X \rightarrow Y$ is a unique quadratic mapping satisfying (2.12).

Corollary 2.5. Let p and θ be positive real numbers with either $p<2$ and $|a|>1$ or $p>2$ and $|a|<1$, and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{equation*}
\|D f(x, y, z)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \tag{2.14}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique Euler-Lagrange type quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\theta \cdot\|x\|^{p}}{4\left(a^{2}-|a|^{p}\right)} \tag{2.15}
\end{equation*}
$$

for all $x \in X$.
Proof. Define $\phi(x, y, z)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$, and apply Theorem 2.4.

Corollary 2.6. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a nonnegative number θ such that

$$
\begin{equation*}
\|D f(x, y, z)\| \leq \theta \tag{2.16}
\end{equation*}
$$

for all $x, y, z \in X$. If $|a| \neq 1$, then there exists a unique Euler-Lagrange type quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\theta}{4\left|1-a^{2}\right|} \tag{2.17}
\end{equation*}
$$

for all $x \in X$.
Proof. Define $\phi(x, y, z)=\theta$, and apply Theorem 2.2 and Theorem 2.4 .

References

[1] J. H. Bae, K. W. Jun and S.M. Jung, On the stability of a quadratic funtional equation, Kyungpook Math. J. 43 (2003), 415-423.
[2] S. Czerwik, On the stability of the mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62(1992), 59-64.
[3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[4] K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
[5] S. M. Jung, Quadratic functional equations of Pexider thpe, Interant. J. Math. Math. Sci. 24 (2000), 351-359.
[6] C. Park, W. Park, On the Jensen's equation in Banach modules, Taiqanese J. Math. 6 (2002), 523-300.
[7] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[8] J. M. Rassisa, On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20 (1992), 185-190.
[9] J. M. Rassias, On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28 (1994), 231-235.
[10] J. M. Rassias, On the stability of the general Euler-Lagrange functional equation, Demonstratio Math. 29 (1996), 755-766.
[11] F. Skof, Local properties and approximations of operators(Italian), Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
[12] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
*

Department of Mathematics
Chungnam National University
Daejeon, 305-764, Republic of Korea
E-mail: kwjun@@math.cnu.ac.kr
**
Department of Mathematics
Chungnam National University
Daejeon, 305-764, Republic of Korea
E-mail: jhoh@cnu.ac.kr

[^0]: Received October 30, 2007.
 2000 Mathematics Subject Classification: Primary 39B62; Secondary 39B82.
 Key words and phrases: Euler-Lagrange type quadratic mapping, generalized Hyers-Ulam stability, functional inequality.

 This work was supported by the second Brain Korea 21 Project in 2006.

