• 제목/요약/키워드: Equations and inequalities

검색결과 75건 처리시간 0.02초

LOCAL CONVERGENCE OF NEWTON'S METHOD FOR PERTURBED GENERALIZED EQUATIONS

  • Argyros Ioannis K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권4호
    • /
    • pp.261-267
    • /
    • 2006
  • A local convergence analysis of Newton's method for perturbed generalized equations is provided in a Banach space setting. Using center Lipschitzian conditions which are actually needed instead of Lipschitzian hypotheses on the $Fr\'{e}chet$-derivative of the operator involved and more precise estimates under less computational cost we provide a finer convergence analysis of Newton's method than before [5]-[7].

  • PDF

STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER

  • Kang, Bowon;Koo, Namjip
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.127-147
    • /
    • 2019
  • In this paper we establish some new explicit solutions for impulsive linear fractional differential equations with impulses at fixed times, which provides a handy tool in deriving singular integral-sum inequalities and an impulsive fractional comparison principle. Thus we study the Mittag-Leffler stability of impulsive differential equations with the Caputo fractional derivative by using the impulsive fractional comparison principle and piecewise continuous functions of Lyapunov's method. Also, we give some examples to illustrate our results.

GLOBAL CONVERGENCE METHODS FOR NONSMOOTH EQUATIONS WITH FINITELY MANY MAXIMUM FUNCTIONS AND THEIR APPLICATIONS

  • Pang, Deyan;Ju, Jingjie;Du, Shouqiang
    • Journal of applied mathematics & informatics
    • /
    • 제32권5_6호
    • /
    • pp.609-619
    • /
    • 2014
  • Nonsmooth equations with finitely many maximum functions is often used in the study of complementarity problems, variational inequalities and many problems in engineering and mechanics. In this paper, we consider the global convergence methods for nonsmooth equations with finitely many maximum functions. The steepest decent method and the smoothing gradient method are used to solve the nonsmooth equations with finitely many maximum functions. In addition, the convergence analysis and the applications are also given. The numerical results for the smoothing gradient method indicate that the method works quite well in practice.

STABILITIES FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu;Koo, Nam Jip;Song, Sse Mok
    • 충청수학회지
    • /
    • 제9권1호
    • /
    • pp.165-174
    • /
    • 1996
  • Using the comparison principle and inequalities we obtain some results on boundedness and stabilities of solutions of the nonlinear functional differential equation $y^{\prime}=f(t,y)+g(t,y,Ty)$.

  • PDF

ON INEQUALITIES OF GRONWALL TYPE

  • Choi, Sung Kyu;Kang, Bowon;Koo, Namjip
    • 충청수학회지
    • /
    • 제20권4호
    • /
    • pp.561-568
    • /
    • 2007
  • In this paper, we improve the results of [9] and give an application to boundedness of the solutions of nonlinear integro-differential equations.

  • PDF

ON INTEGRAL INEQUALITIES OF GRONWALL-BELLMAN-REID TYPE I

  • Zaghrout, A.A.S.;Aly, I.A.
    • Kyungpook Mathematical Journal
    • /
    • 제27권2호
    • /
    • pp.145-152
    • /
    • 1987
  • In this paper we wish to establish some new integral in equalities of the Gronwall-Bellman-Reid type that have a wide range of applications in the differential and integral equations.

  • PDF

STABILITY OF TWO FUNCTIONAL EQUATIONS ARISING FROM DETERMINANT OF MATRICES

  • Choi, Chang-Kwon;Kim, Jongjin;Lee, Bogeun
    • 대한수학회논문집
    • /
    • 제31권3호
    • /
    • pp.495-505
    • /
    • 2016
  • Let $f:{\mathbb{R}}^3{\rightarrow}{\mathbb{R}}$. In this paper we prove the stability of functional inequalities ${\mid}f(ux+vy,uy-vx,zw)-f(x,y,z)f(u,v,w){\mid}{\leq}{\phi}(u,v,w)$ or ${\phi}(x,y,z)$, ${\mid}f(ux-vy,uy-vx,zw)-f(x,y,z)f(u,v,w){\mid}{\leq}{\phi}(u,v,w)$ or ${\phi}(x,y,z)$ for all $x,y,z,u,v,w{\in}{\mathbb{R}}$. Furthermore, we give refined descriptions of bounded functions satisfying the inequalities as in Albert and Baker [1].

EXISTENCE OF SOLUTION FOR IMPULSIVE FRACTIONAL DYNAMIC EQUATIONS WITH DELAY ON TIME SCALES

  • GAO, ZHI-JUAN;FU, XU-YANG;LI, QIAO-LUAN
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.275-292
    • /
    • 2015
  • This paper is mainly concerned with the existence of solution for nonlinear impulsive fractional dynamic equations on a special time scale.We introduce the new concept and propositions of fractional q-integral, q-derivative, and α-Lipschitz in the paper. By using a new fixed point theorem, we obtain some new existence results of solutions via some generalized singular Gronwall inequalities on time scales. Further, an interesting example is presented to illustrate the theory.

REMARKS ON GROUP EQUATIONS AND ZERO DIVISORS OF TOPOLOGICAL STRUCTURES

  • Seong-Kun Kim
    • East Asian mathematical journal
    • /
    • 제39권3호
    • /
    • pp.349-354
    • /
    • 2023
  • The motivation in this paper comes from the recent results about Bell inequalities and topological insulators from group theory. Symmetries which are interested in group theory could be mainly used to find material structures. In this point of views, we study group extending by adding one relator which is easily called an equation. So a relative group extension by a adding relator is aspherical if the natural injection is one-to-one and the group ring has no zero divisor. One of concepts of asphericity means that a new group by a adding relator is well extended. Also, we consider that several equations and relative presentations over torsion-free groups are related to zero divisors.

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES

  • Cui, Yinhua;Hyun, Yuntak;Yun, Sungsik
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권2호
    • /
    • pp.109-127
    • /
    • 2017
  • In this paper, we solve the following quadratic ${\rho}-functional$ inequalities ${\parallel}f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z){\parallel}$ (0.1) ${\leq}{\parallel}{\rho}(f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\frac{1}{{\mid}4{\mid}}}$, and ${\parallel}f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z){\parallel}$ (0.2) ${\leq}{\parallel}{\rho}(f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\mid}8{\mid}$. Using the direct method, we prove the Hyers-Ulam stability of the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of quadratic ${\rho}-functional$ equations associated with the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.