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STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL

SYSTEMS OF NON-INTEGER ORDER

Bowon Kang and Namjip Koo

Abstract. In this paper we establish some new explicit solutions for

impulsive linear fractional differential equations with impulses at fixed
times, which provides a handy tool in deriving singular integral-sum in-

equalities and an impulsive fractional comparison principle. Thus we
study the Mittag-Leffler stability of impulsive differential equations with

the Caputo fractional derivative by using the impulsive fractional compar-

ison principle and piecewise continuous functions of Lyapunov’s method.
Also, we give some examples to illustrate our results.

1. Introduction

The impulsive differential equations are suitable mathematical models for
the description of evolution processes characterized by the combination of a
continuous and jump change of their states. It is now being recognized that
the theory of impulsive differential equations is not only richer than the cor-
responding theory of differential equations but also represents a more natural
framework for mathematical modelling of many real world phenomena. The
qualitative theory of differential equations with impulse effect has been devel-
oped by a large number of mathematicians due to the wide applications of these
systems to the control theory, biology, electronics, etc. For a detailed theory
about impulsive inequalities and some basic concepts of impulsive differential
equations, we refer the reader to [1, 2, 18].

Simeonov and Bainov [27] investigated the exponential stability of the solu-
tions for impulsive differential equations by using the comparison method and
piecewise continuous auxiliary functions which are analogues to Lyapunov’s
functions. Also, Kulev and Bainvo [16] introduced the notions of various types
of uniform Lipschitz stability for impulsive differential systems and obtained
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sufficient conditions for these notions and their relations. Moreover, Choi et
al. [11,12] studied h-stability for the linear impulsive differential equations us-
ing the notions of similarity, t∞-similarity, and impulsive integral inequalities.
Many authors [1, 2, 11, 16, 18, 27, 28] have studied the various types of stability
of solutions for impulsive differential equations. Choi and Koo [8] showed that
the associated variational impulsive system inherits the property of h-stability
from the original nonlinear impulsive differential systems. Also, they [10] ob-
tained a converse h-stability theorem for the nonlinear impulsive systems by
employing the notion of t∞-similarity of the associated impulsive variational
systems and relations.

Lakshmikantham et al. [17, 20] have investigated the basic theory of initial
value problems for fractional differential equations involving Riemann-Liouville
differential operators of order 0 < q < 1. They followed the classical approach
of the theory of differential equations of integer order, in order to compare and
contrast the differences as well as the intricacies that might result in develop-
ment [19, Vol. I]. Li et al. [23] obtained some results about stability of solutions
for fractional-order dynamic systems using fractional Lyapunov direct method
and fractional comparison principle. Choi and Koo [7] improved on the mono-
tone property of [20, Lemma 1.7.3] for the case g(t, u) = λu with a nonnegative
real number λ. They also investigated Mittag-Leffler stability of solutions of
fractional differential equations by using the fractional comparison principle.

Stamova and Stamov [31] investigated the stability for impulsive fractional
differential equations by using the comparison principle and the Lyapunov func-
tion method. Stamova [28–30] studied the various types of global stability and
Mittag-Leffler stability of impulsive fractional differential equations with im-
pulse effect at fixed moments of time by using piecewise continuous functions
of the type of Lyapunov’s functions and a new fractional comparison principle.

In this paper we present the exact solution of homogeneous linear impul-
sive fractional differential equations by the help of the Mittag-Leffler functions.
Then we develop an impulsive fractional differential inequality and the impul-
sive fractional comparison principle. Thus we study Mittag-Leffler stability of
solutions of impulsive Caputo fractional differential equations via an impulsive
fractional integral-sum inequality and piecewise continuous auxiliary functions.
Also, we apply the impulsive fractional inequality to study the data dependence
of the solution on the initial condition to a certain impulsive Caputo fractional
differential equation. Furthermore, we give some examples to illustrate our
results.

2. Preliminary notes and definitions

In this section we introduce definitions and preliminary facts which are used
throughout this paper. For the basic notions and results concerning fractional
calculus, we mainly refer to some books [15,20,25,26].
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We recall the notions of Mittag-Leffler functions which was originally in-
troduced by G. M. Mittag-Leffler in 1902 [24] and is a generalization of the
exponential function. A function frequently used in the solutions of fractional
differential systems is the Mittag-Leffler function defined as

(2.1) Eα(z) =

∞∑
k=0

zk

Γ(kα+ 1)
, α > 0, z ∈ C,

where Γ is the Gamma function. The Mittag-Leffler function with two param-
eters appears most frequently and has the following form

(2.2) Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
,

where α > 0 and β > 0. For β = 1, we have Eα(z) = Eα,1(z) and E1,1(z) = ez

[22, 25].
Let t0 ∈ R+ = [0,∞) and J(t0) = [t0,∞).
We recall some basic definitions and properties of the fractional calculus

theory which are used further in this paper.

Definition 2.1 ([15, 25]). The Riemann-Liouville fractional integral of order
α > 0 with the lower limit t0 for a function g : J(t0)→ R is defined as

Iαt0g(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1g(s)ds, t > t0

provided that the right-hand side is pointwisely defined on J(t0).

Definition 2.2 ([15,25]). The Riemann-Liouville fractional derivative of order
α > 0 with the lower limit t0 for a function g : J(t0)→ R is defined by

Dα
t0g(t)=

1

Γ(n− α)

(
dn

dtn

∫ t

t0

(t− s)n−α−1g(s)ds

)
, t > t0, n−1 < α < n, n∈N.

If 0 < α < 1, then the Riemann-Liouville fractional derivative of order α of
g reduces to

Dα
t0g(t) =

1

Γ(1− α)

d

dt

∫ t

t0

(t− s)−αg(s)ds.

Remark 2.3. The Riemann-Liouville fractional derivatives have singularity at
zero and the fractional differential equations in the Riemann-Liouville sense
require initial conditions at some point different from x0 = t0. To overcome
this issue, Caputo [4, 1967] defined the fractional derivative in the following
way.

Definition 2.4 ([15,25]). The Caputo fractional derivative of order α > 0 with
the lower limit t0 for a function g : J(t0)→ R is defined by

CDα
t0g(t) =

1

Γ(n− α)

∫ t

t0

(t− s)n−α−1 d
n

dsn
g(s)ds, n ∈ N.
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When 0 < α < 1, then the Caputo fractional derivative of order α of g
reduces to

CDα
t0g(t) =

1

Γ(1− α)

∫ t

t0

g′(s)

(t− s)α
ds.

Remark 2.5 ([20]). The main advantage of the Caputo derivative is that the
initial conditions for fractional differential equations are the same form as that
of ordinary differential equations with integer derivatives. Another difference is
that the Caputo derivative for a constant c is zero, while the Riemann-Liouville

fractional derivative for a constant c is not zero but equals to Dα
t0c = c(t−t0)−α

Γ(1−α) .

We need to mention that there exists a link between Riemnann-Liouville
and Caputo fractional derivative of order α. When 0 < α < 1, we have

CDα
t0g(t) = Dα

t0 [g(t)− g(t0)]

= Dα
t0g(t)− g(t0)

Γ(1− α)
(t− t0)−α.

In particular, if g(t0) = 0, then we have

CDα
t0g(t) = Dα

t0g(t).

Hence, we can see that the Caputo derivative is defined for functions for
which the Riemann-Liouville derivative exists. Also, we note that the Mittag-
Leffler functions Eα(z) and Eα,α(z) satisfy the more general differential relation

CDα
t0Eα(λ(t− t0)α) = λEα(λ(t− t0)α),

Dα
t0

(
(t− t0)α−1Eα,α(λ(t− t0)α)

)
= λ(t− t0)α−1Eα,α(λ(t− t0)α), λ ∈ R,

respectively.

Remark 2.6 ([15, 25]). For α, β > 0 and suitable functions ϕ,ψ, we have the
following properties:

(i) Iαt0I
β
t0ϕ(t) = Iα+β

t0 ϕ(t) = Iβt0I
α
t0ϕ(t);

(ii) Iαt0(ϕ(t) + ψ(t)) = Iαt0ϕ(t) + Iαt0ψ(t);

(iii) Iαt0
CDα

t0ϕ(t) = ϕ(t)− ϕ(t0) and CDα
t0I

α
t0ϕ(t) = ϕ(t), 0 < α < 1;

(iv) CDα
t0ϕ(t) = I1−α

t0 Dϕ(t) = I1−α
t0 ϕ′(t), 0 < α < 1.

3. Impulsive fractional comparison principle

Throughout this paper, let Rn be the n-dimensional Euclidean space with
a convenient vector norm | · |, and Ω be an open subset of Rn containing the
origin, and 0 < q < 1. We consider the following impulsive Caputo fractional
differential system with impulses at fixed times

CDq
t0x(t) = f(t, x(t)), t ∈ J(t0), t 6= tk,

∆x(tk) = Ik(x(tk)), k ∈ N,
x(t0) = x0,

(3.1)
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where CDq
t0 is the Caputo fractional derivative of order q ∈ (0, 1) with the

lower limit zero and x0 ∈ Ω. Assume that the following basic conditions hold:

(A1) A sequence {tk} is unbounded increasing satisfying 0 ≤ t0 < t1 < t2 <
· · · and limk→∞ tk =∞.

(A2) The function f : R+ × Ω → Rn is continuous in (tk−1, tk] × Ω, k =
1, 2, . . . , and f(t, 0) = 0 for each t ∈ R+.

(A3) For any x ∈ Ω and any k = 1, 2, . . . , the function f has finite limits as
(t, y)→ (tk, x), t > tk.

(A4) Each function Ik : Ω→ Rn is continuous in Ω and there exist nonneg-
ative constants lk such that

|Ik(x)− Ik(y)| ≤ lk|x− y|, k ∈ N, x, y ∈ Ω,

and Ik(0) = 0, k = 1, 2, . . ..
(A5) The solution x(t, t0, x0) of Eq. (3.1) which satisfies the initial condi-

tion x(t+0 , t0, x0) = x0 is defined in the interval (t0,∞), and is left
continuous.

(A6) At the moments tk the following relations hold

x(t−k ) = x(tk), ∆x(tk) = x(t+k )− x(t−k ), k ∈ N,

where x(t+k ) = limε→0+ x(tk + ε) and x(t−k ) = limε→0− x(tk + ε) repre-
sent the right and left limits of x(t) at t = tk, respectively.

Then it follows from the condition (A5) that the solution x(t, t0, x0) of Eq. (3.1)
with the initial value (t0, x0) is described as the following result.

Lemma 3.1 ([32]). A function x ∈ PC(J(t0),Rn) is a solution of the fractional
integral equation

x(t)=


x(t0) + 1

Γ(q)

∫ t
t0

(t− s)q−1f(s, x(s))ds, t ∈ [t0, t1],

x(t0)+
k∑
i=1

Ii(x(t−i ))+ 1
Γ(q)

∫ t
t0

(t−s)q−1f(s, x(s))ds, t∈(tk, tk+1], k∈N,
...

if and only if x is a solution of Eq. (3.1).

Let Gk = {(t, x) ∈ R+ × Ω : tk−1 < t < tk}, k = 1, 2, . . . and G = ∪∞k=1Gk.
In the further considerations, we shall use piecewise continuous auxiliary func-
tions.

Definition 3.2 ([18,27]). We say that a function V : R+ ×Ω→ R belongs to
the class υ0 if

(i) V is continuous in Gk for each k ∈ N and V (t, 0) = 0 for each t ∈ R+;
(ii) V is locally Lipschitz continuous with respect to its second variable on

each of the sets Gk and for any k ∈ N and x ∈ Ω there exist the finite
limits

V (t−k , x) = lim
(t,y)→(tk,x)

t<tk

V (t, y), V (t+k , x) = lim
(t,y)→(tk,x)

t>tk

V (t, y)
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and the equality V (t−k , x) = V (tk, x) holds.

We note that if t 6= tk, then V (t+, x) equals V (t, x).
For the extension of the fractional comparison principle, we need the follow-

ing result which improves Lemma 1.7.5 in [20].

Lemma 3.3 ([7, Lemma 2.4]). Let 0 < α < 1. Consider the Caputo fractional
scalar differential equation

CD
α

t0u(t) = g(t, u(t)), t ≥ t0,

where g(t, u) ≥ 0 and t0 ∈ R+. If the solutions exist and u(t0) ≥ 0, then they
are nonnegative. Furthermore, if g(t, u) = λu for λ ≥ 0, then the solutions are
nondecreasing in t.

Lemma 3.4 ([7, Lemma 2.11]). Let 0< α< 1. Suppose that w, v∈C(J(t0),R+)
satisfy

v(t)− 1

Γ(α)

∫ t

t0

(t− s)α−1g(s, v(s))ds < w(t)− 1

Γ(α)

∫ t

t0

(t− s)α−1g(s, w(s))ds,

where g ∈ C(J(t0) × R,R+) and g(t, u) is monotone nondecreasing in u for
each t ∈ J(t0).

If v(t0) < w(t0), then we have v(t) < w(t) on J(t0).

The following result is an impulsive extension of the fractional comparison
principle in [7, Lemma 2.11].

Lemma 3.5. Let 0 < α < 1. Suppose that g ∈ PC(J(t0) × R,R+) and
g(t, u) is monotone nondecreasing in u for each t ∈ R. Suppose that w, v ∈
PC(J(t0),R+) satisfy the following impulsive fractional inequality

(3.2) v(t)− Iαt0g(t, v) < w(t)− Iαt0g(t, w), t ∈ [t0, t1]

and

v(t)−
k∑
i=1

Ii(v(t−i ))− Iαt0g(t, v)(3.3)

< w(t)−
k∑
i=1

Ii(w(t−i ))− Iαt0g(t, w), t ∈ (tk, tk+1], k ∈ N,

where Iαt0g(t, v)= 1
Γ(α)

∫ t
t0

(t−s)α−1g(s, v(s))ds, and each function Ik∈C(R,R+)

(k ∈ N) is nondecreasing in x ∈ R.
Then v(t0) < w(t0) implies

(3.4) v(t) < w(t), t ∈ J(t0).

Proof. Let t ∈ (t0, t1]. Then it follows from [7, Lemma 2.11] that v(t) < w(t),
t ∈ (t0, t1].
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Suppose that the inequality (3.4) is satisfied for t ∈ (tk−1, tk], k > 1. We
claim that the inequality (3.4) is satisfied for t ∈ (tk, tk+1], k > 1. Assume that
the conclusion is not true. Then there exists a τk ∈ (tk, tk+1] such that

v(τk) = w(τk), v(t) < w(t), tk < t < τk.

It follows from (3.3) that

v(τk) < w(τk)−
k∑
i=1

Ii(w(t−i ))− Iαt0g(τk, w) +

k∑
i=1

Ii(v(t−i )) + Iαt0g(τk, v)

= w(τk)− [

k∑
i=1

(Ii(w(t−i ))− Ii(v(t−i ))) + Iαt0(g(τk, w)− g(τk, v))]

≤ w(τk),

since each function Ik is nondecreasing and Iαt0g(τk, w) ≥ Iαt0g(τk, v). This
contradicts the fact that w(τk) = v(τk) at t = τk, and hence the inequality
(3.4) is valid for t ∈ (tk, tk+1]. The proof is completed by induction. �

Remark 3.6. If we set Ik(x) = 0 for each k ∈ N in assumptions of Lemma 3.3,
then Lemma 3.3 reduces to lemma 2.11 in [7].

We recall the notions of the Mittag-Leffler stability for Eq. (3.1) which are
analogous to the definitions given in [22,30].

Definition 3.7 ([7, 22]). The zero solution x = 0 of Eq. (3.1) is said to be

(a) a Mittag-Leffler system if

|x(t)| ≤ {m(x(t0))Eq(λ(t− t0)q)}b, t ≥ t0,
where λ ∈ R, b > 0,m(0) = 0,m(x) ≥ 0, and m(x) is locally Lipschitz
on B ⊆ Rn with a Lipschitz constant m0;

(b) Mittag-Leffler stable if it is a Mittag-Leffler system with λ ≤ 0;
(c) globally Mittag-Leffler stable if (b) holds for Ω = Rn.

The following result is adapted from Theorem 3.4 in [7] and Theorem 2.1 in
[21].

Theorem 3.8. Suppose that the function f in Eq. (3.1) satisfies

|f(t, x)| ≤ g(t, |x|), t 6= tk,

|Ik(x(tk))| ≤ Jk(|x(tk)|), k ∈ N,

where g ∈ C(J(t0) × R,R+) is monotone increasing in u for each t ∈ J(t0)
and g(t, 0) = 0 for each t ∈ J(t0). We consider the following impulsive Caputo
fractional differential equation

CDq
t0u(t) = g(t, u(t)), t ∈ J(t0), t 6= tk,

∆u(tk) = Jk(u(tk)), k ∈ N,
u(t0) = ut0 ,

(3.5)
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where each function Jk : R+ → R, k ∈ N, is continuous. If the zero solution
u = 0 of Eq. (3.5) is a Mittag-Leffler system, then the zero solution x = 0 of
Eq. (3.1) is also a Mittag-Leffler system whenever u(t0) > |x(t0)|.

Proof. Note that Eq. (3.1) is equivalent to the following fractional integral
equation:

x(t)=


x(t0) + 1

Γ(q)

∫ t
t0

(t− s)q−1f(s, x(s))ds, t ∈ [t0, t1],

x(t0)+
k∑
i=1

Ii(x(t−i ))+ 1
Γ(q)

∫ t
t0

(t−s)q−1f(s, x(s))ds, t∈(tk, tk+1], k∈N,
...

(3.6)

Then we obtain

|x(t)| ≤ |x(t0)|+ Iqt0 |f(t, x(t))|, t ∈ [t0, t1]

and

|x(t)| ≤ |x(t0)|+
k∑
i=1

|Ii(x(t−i ))|+ Iqt0 |f(t, x(t))|

≤ |x(t0)|+
k∑
i=1

Ji(|x(t−i )|) + Iqt0g(t, |x(t)|), k ∈ N,

where Iαt0g(t, u) = 1
Γ(α)

∫ t
t0

(t− s)α−1g(s, u(s))ds. Thus we have

|x(t)| −
k∑
i=0

Ji(|x(t−i )|)− Iqt0g(t, |x(t)|)

≤ |x(t0)|
< u(t0)

= u(t)−
k∑
i=0

Ji(u(t−i ))− Iqt0g(t, u(t)), t ≥ t0, k ∈ N,

where u(t0) ∈ R+ and J0(u) = 0 for each u ∈ R. By Lemma 3.5, we have
|x(t)| < u(t) for all t ≥ t0. Also we see that

|x(t)| < u(t) ≤ {m(u(t0))Eq(λ(t− t0)q)}b

≤ {m0u(t0)Eq(λ(t− t0)q)}b

= {m0d|x(t0)|Eq(λ(t− t0)q)}b

= {m̂(|x(t0)|)Eq(λ(t− t0)q)}b, t ≥ t0,

where λ ∈ R, u(t0) = |x(t0)|d, d > 1, and m̂(x) = m0dx is locally Lipschtiz
with Lipschitz constant l = m0d. This completes the proof. �
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Corollary 3.9. Suppose that all conditions of Theorem 3.8 hold. If the zero
solution u = 0 of Eq. (3.5) is Mittag-Leffler stable, then the zero solution x = 0
of Eq. (3.1) is also Mittag-Leffler stable whenever u0 > |x0|.

Remark 3.10. Suppose that all conditions of Theorem 3.8 hold. The asymptotic
stability of Eq. (3.5) implies the corresponding asymptotic stability of Eq. (3.1).

Lemma 3.11. If a function x ∈ C(J(t0),R) satisfies the linear Caputo frac-
tional scalar differential equation{

CDq
t0x = λx+ h(t), t ∈ J(t0),

x(t0) = xt0 ,
(3.7)

where λ ∈ R and h ∈ C(J(t0),R). Then a function x also satisfies the fractional
integral equation

x(t) = x(t0) +
1

Γ(q)

∫ t

t0

(t− s)q−1(λx(s) + h(s))ds, t ≥ t0(3.8)

and vice versa. Then we get the unique solution of (3.8) as

x(t) = x(t0)Eq(λ(t− t0)) +

∫ t

t0

(t− s)q−1Eq,q(λ(t− s)q)h(s)ds

= x(t0)Eq(λ(t− t0)) + h(t) ∗ tq−1Eq,q(λt
q), t ≥ t0,

where h(t) ∗ tq−1Eq,q(λt
q) =

∫ t
t0

(t− s)q−1Eq,q(λ(t− s)q)h(s)ds.

Consider the following impulsive Caputo fractional differential equation
CDq

t0u = λu+ d, t ∈ J(t0), t 6= tk,

∆u(tk) = βku(tk), k ∈ N,
u(t0) = ut0 ,

(3.9)

where λ, d and βk are constants.

Lemma 3.12 ([20]). A function u ∈ C(J(t0),R) is a solution of the following
linear Caputo fractional differential equation with initial condition{

CDq
t0u(t) = λu(t), t ∈ J(t0), λ ∈ R,

u(t0) = ut0 ,
(3.10)

if and only if the solution u of Eq. (3.10) is given by

u(t) = u(t0)Eq(λ(t− t0)q), t ≥ t0.

Lemma 3.13 ([32]). A function u ∈ C(J(t0),R) is a solution of the fractional
integral equation

u(t) = ua −
1

Γ(q)

∫ a

t0

(a− s)q−1g(s, u(s))ds+
1

Γ(q)

∫ t

t0

(t− s)q−1g(s, u(s))ds,
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if and only if a function u is a solution of the following Caputo fractional
differential equation with initial condition{

CDq
t0u = g(t, u(t)), t ∈ J(t0),

u(a) = ua, a > t0.
(3.11)

We can obtain the following result on an exact solution of homogeneous
linear impulsive fractional differential equations by the help of the Mittag-
Leffler functions.

Theorem 3.14 ([9, Theorem 2.4]). If we set d = 0 in Eq. (3.9), then the
solution u(t) of Eq. (3.9) is given by

u(t) =


u(t0)Eq(λ(t− t0)q), t ∈ [t0, t1],

u(t0)

k∏
i=1

(1 + βiEq(λ(ti − t0)q))Eq(λ(t− t0)q), t ∈ (tk, tk+1], k ∈ N,

...

(3.12)

Proof. Let t ∈ [t0, t1]. Then we have

u(t) = u(t0)Eq(λ(t− t0)q), t ∈ [t0, t1].

Suppose that (3.12) holds for some k ∈ N. Then we have

u(t) = u(t0)

k∏
i=1

(1 + βiEq(λ(ti − t0)q)) +
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= u(t0)

k∏
i=1

(1 + βiEq(λ(ti − t0)q))Eq(λ(t− t0)q)), t ∈ (tk, tk+1].

Let t ∈ (tk+1, tk+2]. From Lemma 3.13, we obtain

u(t) = u(t+k+1)− 1

Γ(q)

∫ tk+1

t0

(tk+1 − s)q−1λu(s)ds+
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= (1 + βk+1)u(t−k+1)− 1

Γ(q)

∫ tk+1

t0

(tk+1 − s)q−1λu(s)ds

+
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= u(t0)

k∏
i=1

(1 + βiEq(λ(ti − t0)q))

+ βk+1u(t0)

k∏
i=1

(1 + βiEq(λ(ti − t0)q))Eq(λ(tk+1 − t0)q))
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+
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= u(t0)

k+1∏
i=1

(1 + βiEq(λ(ti − t0)q)) +
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= u(t0)

k+1∏
i=1

(1 + βiEq(λ(ti − t0)q))Eq(λ(t− t0)q), t ∈ (tk+1, tk+2].

It follows form induction that

u(t) = u(t0)Eq(λ(t− t0)q), t ∈ [t0, t1]

and

u(t) = u(t0)

k∏
i=1

(1 + βiEq(λ(ti − t0)q))Eq(λ(t− t0)q), t ∈ (tk, tk+1], k ∈ N.

This completes the proof. �

Consider the following impulsive Caputo fractional differential inequality of
Gronwall type 

CDq
t0u ≤ λu+ d, t 6= tk, t > t0,

∆u(tk) ≤ βku(tk) + dk, k ∈ N,
u(t0) = ut0 ,

(3.13)

where λ, d, dk and βk, k ∈ N, are constants.
We can obtain the following impulsive Caputo fractional differential inequal-

ity of Gronwall type.

Lemma 3.15. Suppose that a function m ∈ PC(J(t0),R) satisfies
CDq

t0m(t) ≤ λm(t), t ∈ J(t0), t 6= tk,

m(t+k ) ≤ (1 + βk)m(t−k ), k ∈ N,
m(t+0 ) = mt0 ,

(3.14)

where λ, βk, k ∈ N, are constants. Then we have

m(t) ≤


m(t0)Eq(λ(t− t0)q), t ∈ [t0, t1],

m(t0)

k∏
i=1

[1 + βiEq(λ(ti − t0)q)]Eq(λ(t− t0)q), t ∈ (tk, tk+1], k ∈ N.

Proof. Let t ∈ [t0, t1]. From Lemma 3.4 in [5], we have

m(t) ≤ m(t0)Eq(λ(t− t0)q), t ∈ [t0, t1].
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Let t ∈ (t1, t2]. There exist a nonnegative function n(t) and nonnegative con-
stants dk satisfying{

CDq
t0m(t) = λm(t)− n(t), t 6= tk,

m(t+k ) = (1 + βk)m(t−k )− dk, k ∈ N.

From Lemma 3.13, we obtain

m(t) = m(t+1 )− 1

Γ(q)

∫ t1

t0

(t1 − s)q−1(λm(s)− n(s))ds

+
1

Γ(q)

∫ t

t0

(t− s)q−1(λm(s)− n(s))ds

= (1 + β1)m(t−1 )− d1 −
1

Γ(q)

∫ t1

t0

(t1 − s)q−1(λm(s)− n(s))ds

+
1

Γ(q)

∫ t

t0

(t− s)q−1(λm(s)− n(s))ds

= m(t0)(1 + β1Eq(λ(t1 − t0)q))− d1

+
1

Γ(q)

∫ t

t0

(t− s)q−1(λm(s)− n(s))ds, t ∈ (t1, t2].

It follows from Lemma 3.11 that

m(t) = [m(t0)(1 + β1Eq(λ(t1 − t0)q))− d1]Eq(λ(t− t0)q)

− n(t) ∗ tq−1Eq,q(λt
q), t ∈ (t1, t2],

where ∗ denotes the convolution operator of nonnegative functions n(t) and
tq−1Eq,q(λt

q). Since n(t) ∗ tq−1Eq,q(λt
q) and d1Eq(λ(t− t0)q) are nonnegative

for each t ≥ t0, then we have

m(t) ≤ m(t0)[1 + β1Eq(λ(t1 − t0)q)]Eq(λ(t− t0)q), t ∈ (t1, t2],

where λ and β1 are constants. From induction, we obtain

m(t) ≤ m(t0)
k∏
i=1

[1 + βiEq(λ(ti − t0)q)]Eq(λ(t− t0)q), t ∈ (tk, tk+1], k ∈ N,

where λ and βi, i ∈ N, are constants. This completes the proof. �

We obtain the following impulsive fractional integral inequality by induction
as in Lemma 2.2 in [14].

Lemma 3.16 ([14, Lemma 2.2]). Let a function u ∈ PC(J(t0),R) satisfies the
following integral-sum inequality

u(t) ≤ c+ λ

∫ t

t0

(t− s)q−1u(s)ds+
∑

t0<tk<t

βku(t−k ), k ∈ N,(3.15)
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where c, λ, and βk, k ∈ N, are nonnegative constants. Then

u(t)≤


cEq(Γ(q)λ(t− t0)q), t ∈ (t0, t1],

c
k∏
i=1

(1+βiEq(Γ(q)λ(ti−t0)q))Eq(Γ(q)λ(t−t0)q), t ∈ (tk, tk+1], k∈N,
...

(3.16)

4. Mittag-Leffler stability

In this paper we investigate the Mittag-Leffler stability of solutions of im-
pulsive Caputo fractional differential equations via a new impulsive fractional
comparison principle and piecewise continuous auxiliary functions of the type
of Lyapunov’s functions.

Theorem 4.1. Let α3 ∈ R. Suppose that there is a function V ∈ v0 such that

α1|x|a ≤ V (t, x) ≤ α2|x|a, (t, x) ∈ R+ × Ω,(4.1)

CDq
t0V (t, x) ≤ α3|x|a, (t, x) ∈ Gk,(4.2)

V (t+k , x+ Ik(x)) ≤ V (tk, x), x ∈ Ω, k ∈ N,(4.3)

where Ω ⊂ Rn is a domain containing the origin, q ∈ (0, 1), α1, α2 and a are
arbitrary positive constants. Then the zero solution x = 0 of Eq. (3.1) is a
Mittag-Leffler system.

Proof. Let x(t) = x(t, t0, x0) be any solution of Eq. (3.1). Then it follows from
(4.1) and (4.2) that

CDq
t0V (t, x) ≤ α3|x|a(4.4)

≤

{
α3

α1
V (t, x), (t, x) ∈ Gk if α3 ≥ 0,

α3

α2
V (t, x), (t, x) ∈ Gk if α3 < 0,

(4.5)

= λV (t, x), (t, x) ∈ Gk,(4.6)

V (t+k , x(t+k )) = V (t+k , x+ Ik(x)) ≤ V (tk, x), x ∈ Ω, k ∈ N,(4.7)

where

λ =

{
α3

α1
, if α3 ≥ 0,

α3

α2
, if α3 < 0.

(4.8)

Put m(t) = V (t, x(t)) and βk = 0, k ∈ N, in the assumption of Lemma 3.15.
It follows from Lemma 3.15 that

V (t, x(t)) ≤

{
V (t0, x(t0))Eq(λ(t− t0)q), t ∈ [t0, t1],

V (t0, x(t0))Eq(λ(t− t0)q), t ∈ (tk, tk+1], k ∈ N.
(4.9)

In view of (4.1), we have

|x(t)| ≤ {α2

α1
|x(t0)|aEq(λ(t− t0)q)} 1

a
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= {m(|x(t0)|)Eq(λ(t− t0)q)} 1
a , t ≥ t0,

where m(x) = α2

α1
xa is locally Lipschitz on Ω and λ is given by

λ =

{
α3

α1
, if α3 ≥ 0,

α3

α2
, if α3 < 0.

Hence the zero solution x = 0 of Eq. (3.1) is a Mittag-Leffler system. This
complete the proof. �

We obtain the following results as the special cases of Theorem 4.1.

Corollary 4.2. Suppose that all conditions of Theorem 4.1 hold and α3 is a
nonpositive constant. Then the zero solution x = 0 of Eq. (3.1) is Mittag-
Leffler stable. Furthermore, if α3 is a negative constant, then all solutions x(t)
of Eq. (3.1) tend monotonically zero as t→∞.

Proof. Let x(t) = x(t, t0, x0) be any solution of Eq. (3.1). Then it follows from
Theorem 4.1 that

|x(t)| ≤ {α2

α1
|x(t0)|aEq(

α3

α2
(t− t0)q)} 1

a , t ≥ t0.(4.10)

Since α3

α2
is negative in (4.10), it follows from Lemma 5 in [6] that Eq(

α3

α2
(t−t0)q)

tends monotonically zero as t→∞. Hence, all solutions x(t) of Eq. (3.1) tend
monotonically zero as t→∞. This completes the proof. �

We also obtain the boundedness of solutions of impulsive fractional differ-
ential systems via the fractional Lyapunov method.

Remark 4.3. In addition to the assumptions of Theorem 4.1, suppose that α3

is a nonpositive constant. Then all solutions of Eq. (3.1) are bounded on R+.

By using Lyapunov function method and fractional comparison principle,
Stamova [30, Theorems 4.1-4.3] studied Mittag-Leffler stability of the solutions
of impulsive differential equations of fractional order.

In order to study Mittag-Leffler stability of Eq. (3.1), we revise the assump-
tion (4.2) of [30, Theorems 4.1] to the condition (4.13) with impulse effects at
fixed times. We will apply the new impulsive fractional differential inequality
of Gronwall type to the proof of the following result.

Theorem 4.4. Suppose that there exists a function V ∈ v0 such that

α1|x|a ≤ V (t, x) ≤ α2|x|ab, (t, x) ∈ R+ × Ω,(4.11)

CDq
t0V (t, x) ≤ −α3|x|ab, (t, x) ∈ Gk,(4.12)

V (t+k , x+ Ik(x)) ≤ (1 + ek)V (tk, x), x ∈ Ω ⊂ Rn, k ∈ N,(4.13)

where each ek, k ∈ N, is a constant with
∏∞
k=1(1 + |ek|) < ∞, and q ∈ (0, 1),

α1, α2, α3, a and b are arbitrary positive constants. Then the zero solution x = 0
of Eq. (3.1) is Mittag-Leffler stable.
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Proof. Let x(t) = x(t, t0, x0) be any solution of Eq. (3.1). From (4.11) and
(4.12) it follows that

CDq
t0V (t, x) ≤ −α3|x|ab ≤ −

α3

α2
V (t, x), (t, x) ∈ Gk(4.14)

V (t+k , x(t+k )) = V (t+k , x+ Ik(x)) ≤ (1 + ek)V (tk, x), x ∈ Ω, k ∈ N.(4.15)

Putting m(t) = V (t, x(t)) and application of Lemma 3.15 yield

V (t, x(t)) ≤


V (t0, x(t0))Eq(−α3

α2
(t− t0)q), t ∈ [t0, t1],

V (t0, x(t0))

k∏
i=1

[1 + eiEq(−
α3

α2
(ti − t0)q)]Eq(−

α3

α2
(t− t0)q),

t ∈ (tk, tk+1], k ∈ N.

(4.16)

From monotonicity of Eq(−α3

α2
(ti− t0)q) for each ti ≥ t0 and (4.11), we have

|x(t)| ≤ {α2

α1
|x(t0)|ab

k∏
i=1

(1 + |ei|)Eq(−
α3

α2
(t− t0)q)} 1

a

≤ {m(|x(t0)|)Eq(−λ(t− t0)q)} 1
a , t ≥ t0,

where λ = α3

α2
> 0 and m(x) = α2

α1

∞∏
i=1

(1 + |ei|)xab is locally Lipschitz on

Ω. Hence the zero solution x = 0 of Eq. (3.1) is Mittag-Leffler stable. This
completes the proof. �

Remark 4.5. We obtain the following results as the special cases of Theorems
4.1 and 4.4.

(1) In case q = 1 in the assumptions of Theorem 4.1, the Mittag-Leffler sta-
bility of impulsive fractional differential equations implies the exponen-
tial stability of differential equations with impulse effect in [8, Corollary
3.14].

(2) If one sets ek = 0 for each k ∈ N in the assumptions of Theorem 4.4 ,
the assumption (4.13) of Theorem 4.4 reduces to the assumption (4.2)
of Theorem 4.1 in [30].

(3) Furthermore, if we sets V (t+k , x+Ik(x)) = V (tk, x) for each k ∈ N in the
assumptions of Theorem 4.4, then Theorem 4.4 reduces to Corollary
18 in [6].

Lemma 4.6 ([22]). Let α ≥ 0, and f(t, x) be continuous on R+ × Ω. Then

||CD−αt0 f(t, x)|| ≤C D−αt0 ||f(t, x)||, (t, x) ∈ R+ × Ω.

We obtain the following result adapted from Theorem 4.3 in [30] by using
the impulsive fractional differential inequality of Gronwall type.

Theorem 4.7. Assume that the following conditions hold.
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(1) The function f(t, x) is Lipschitz continuous with respect to x ∈ Ω with
Lipschitz constant l > 0.

(2) There exists a function V ∈ v0 such that

α1|x|a ≤ V (t, x) ≤ α2|x|, (t, x) ∈ R+ × Ω,

V̇(3.1)(t, x) ≤ −α3|x|a, (t, x) ∈ Gk,
V (t+k , x+ Ik(x)) ≤ (1 + ek)V (tk, x), x ∈ Ω ⊂ Rn, k ∈ N,

where each ek is a constant with
∏∞
k=1(1+ |ek|) <∞, and V̇(3.1)(t, x) = dV (t,x)

dt ,
and α1, α2, α3 and a are arbitrary positive constants.

Then the zero solution x = 0 of Eq. (3.1) is Mittag-Leffler stable.

Proof. Let x(t) = x(t, t0, x0) be any solution of Eq. (3.1). Following the same
proof as for Theorem 4.3 in [30] and the assumptions of Theorem 4.4 yield

CDq
t0V (t, x(t)) =C D1−α

t0 V (t, x(t))

= D−αt0 V̇ (t, x(t))

≤ −α3D
−α
t0 |x(t)| ≤ −α3

l
D−αt0 |f(t, x)| ≤ −α3

l
|x(t)|

≤ − α3

α2l
V (t, x), (t, x) ∈ Gk, k ∈ N,

where q = 1 − α and D−αt0 x(t0) = 0. From similar argument in the proof of
Lemma 3.15, we obtain

|x(t)| ≤ {α2

α1
|x(t0)|

k∏
i=1

(1 + |ei|)Eq(−
α3

α2l
(t− t0)q)} 1

a

≤ {m(|x(t0)|)Eq(−λ(t− t0)q)} 1
a , t ≥ t0,

where λ = α3

α2l
> 0 and m(x) = α2

α1

∞∏
i=1

(1+|ei|)x is locally Lipschitz on Ω. Hence

the zero solution x = 0 of Eq. (3.1) is Mittag-Leffler stable. This completes the
proof. �

5. An application and examples

In this section we apply our results on impulsive fractional inequality to
study the data dependence of the solution on the initial condition to a cer-
tain fractional differential equation involving the Caputo fractional derivative.
Furthermore, we give some examples to illustrate our results.

We consider the following nonlinear impulsive fractional scalar differential
equation with initial value

CDq
t0x(t) = f(t, x(t)), t ∈ J(t0), t 6= tk,

∆x(tk) = Ik(x(tk)), k ∈ N,
x(t0) = x0 ∈ R.

(5.1)
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Furthermore, assume that the following basic conditions hold:

(A1) The function f : J(t0) × R → R is jointly continuous. There exists a
positive constant L such that

|f(t, u)− f(t, v)| ≤ L|u− v| for all t ∈ J(t0), and all u, v ∈ R.

(A2) Each function Ik : R → R is continuous and there exist positive con-
stants Kk, k ∈ N, such that

|Ik(t, u)− Ik(t, v)| ≤ Kk|u− v|, u, v ∈ R, k ∈ N,

where each constant Kk is nonnegative for each k ∈ N.
(A3) The solution x(t, t0, x0) of Eq. (5.1) which satisfies the initial condition

x(t+0 , t0, x0) = x0 is defined in the interval (t0,∞), and is left contin-
uous. Then the solution of Eq. (5.1) satisfies the fractional integral
equation:

x(t, t0, x0)

=


x(t0) + 1

Γ(q)

∫ t
t0

(t− s)q−1f(s, x(s))ds, t ∈ [t0, t1],

x(t0)+
k∑
i=1

Ii(x(t−i ))+ 1
Γ(q)

∫ t
t0

(t− s)q−1f(s, x(s))ds, t ∈ (tk, tk+1], k ∈ N,

...

The existence and uniqueness of solutions of Eq. (5.1) have been investigated
in [32, Theorem 3.10]. Then we obtain the following data dependence result.

Theorem 5.1. Assume that conditions (A1)-(A3) hold. Let x, y : J(t0) → R
be the solutions of Eq. (5.1) with initial values x0 and y0, respectively. Then
we have

|x(t, t0, x0)− y(t, t0, y0)|

≤


|x0 − y0|Eq(L(t− t0)q), t ∈ (t0, t1],

|x0 − y0|
k∏
i=1

[1 +KiEq(L(ti − t0)q)]Eq(L(t− t0)q), t ∈ (tk, tk+1], k ∈ N,

...

Proof. Let t ∈ J(t0). From conditions (A1)-(A3), we obtain

|x(t)− y(t)| ≤ |x0 − y0|+
∑

t0<tk<t

Ki|x(t−i )− y(t−i )|

+
L

Γ(q)

∫ t

t0

(t− s)q−1|x(s)− y(s)|ds, t ∈ (tk, tk+1], k ∈ N.

Letting u(t) = |x(t)− y(t)| in Lemma 3.16 yields

|x(t)− y(t)| ≤ |x0 − y0|Eq(L(t− t0)q), t ∈ [t0, t1]
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and

|x(t)− y(t)|

≤ |x0 − y0|[
k∏
i=1

1 +KiEq(L(ti − t0)q)]Eq(L(t− t0)q), t ∈ (tk, tk+1], k ∈ N.

This completes the proof. �

We give an example to illustrate Theorem 5.1.

Example 5.2 ([3, 13]). Let 0 < q ≤ 1, t0 = 0 and tk = k
2 , k ∈ N. Let J =

[0, T ] ⊂ R+. Consider the following impulsive fractional differential equation
with initial value

CDq
0x(t) = |x(t)|

(1+99et)(1+|x(t)|) , t ∈ (0, T ], t 6= tk = k
2 ,

∆x(k2 ) =
|x( k2 )|

100(1+|x( k2 )|) , k ∈ N,
x(0) = x0 ∈ R+,

(5.2)

where f(t, x) = |x|
(1+99et)(1+|x|) , (t, x) ∈ R+×R+ and Ik(x) = |x|

100(1+|x|) , x ∈ R+.

Let x, y ∈ R+ and t ∈ R+. Then we have

|f(t, x)− f(t, y)| = 1

(1 + 99et)
| |x|
1 + |x|

− |y|
1 + |y|

|

=
|x− y|

(1 + 99et)(1 + x)(1 + y)

≤ 1

100
|x− y|, x, y ∈ R+.

Thus the condition (A1) holds with L = 1
100 . Also, we have

|Ik(x)− Ik(y)| ≤ 1

100
|x− y|, x, y ∈ R+, k ∈ N.

It follows from Theorem 5.1 that

|x(t, 0, x0)− y(t, 0, y0)|

≤


|x0 − y0|Eq(L(t)q), t ∈ [0, 1

2 ]

|x0 − y0|
k∏
i=1

[1 +KiEq(Lti)
q)]Eq(L(t)q), t ∈ (k2 ,

k+1
2 ], k ∈ N,

=


|x0 − y0|Eq( 1

100 (t)q), t ∈ [0, 1
2 ]

|x0 − y0|
k∏
i=1

[1 + 1
100Eq(

1
100 ( i2 )q)]Eq(

1
100 t

q), t ∈ (k2 ,
k+1

2 ], k ∈ N,

where x(t) and y(t) are solutions of Eq. (5.1) with initial values x0 and y0,
respectively.
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Remark 5.3. In particular, we suppose that t0 = 0, T = 1 and tk = t1 = 1
2 in

assumptions of Example 5.2. Furthermore, suppose that q satisfies the following
condition

(5.3)
T qL(k + 1)

Γ(q + 1)
+ kKk < 1⇔ Γ(q + 1) >

2

99
.

Then Eq. (5.2) has a unique solution on J = [0, 1].

Next, we give two examples to illustrate Theorems 4.1 and 4.4.

Example 5.4. Let λ ∈ R and t0 = 0. Consider the following impulsive
fractional differential equation

CD
q
0|x(t)| = λ |x(t)|

(1+x2(t)) , t > 0, t 6= tk,

∆x(tk) = − x(tk)
1+x2(tk) , k ∈ N,

x(0+) = x0 ∈ R,
(5.4)

where Ik(x(tk)) = − x(tk)
1+x2(tk) , k ∈ N. Let V (t, x) = |x| for each (t, x) ∈ R+×R.

Then we have

CD
q

0V (t, x) = CD
q

0|x(t)| = λ
|x(t)|

(1 + x2(t))

≤ λ|x(t)| = λV (t, x), (t, x) ∈ R+ × R, t 6= tk

and

V (t+k , x+ Ik(x)) = |x(tk)− x(tk)

1 + x2(tk)
| ≤ (1− 1

1 + x2(tk)
)|x(tk)|

≤ V (tk, x), k ∈ N.

Thus the zero solution x = 0 of Eq. (5.4) is a Mittag Leffler system by
Theorem 4.1.

Example 5.5 ([28]). Consider the following impulsive fractional differential
equation 

CD
q
0|x(t)| = −c|x(t)|(1 + x2(t)), t > 0, t 6= tk,

∆x(tk) = ekx(tk), k ∈ N,
x(0+) = x0,

(5.5)

where x0 ∈ R and −1 < ek < 1, k ∈ N. Let V (t, x) = |x| for each (t, x) ∈
R+ × R. Then we have

CD
q

0V (t, x) = CD
q

0|x(t)| = −c|x(t)|(1 + x2(t)) ≤ −c|x(t)|
= −cV (t, x), (t, x) ∈ R+ × R, t 6= tk

and

V (t+k , x+ ekx) = |(1 + ek)x(tk)| ≤ (1 + |ek|)V (tk, x(tk)), k ∈ N,
where

∏∞
k=1(1 + |ek|) < ∞. Thus the zero solution x = 0 of Eq. (5.5) is

Mittag-Leffler stable by Theorem 4.4.
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