Browse > Article
http://dx.doi.org/10.7468/jksmeb.2017.24.2.109

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES  

Cui, Yinhua (Department of Mathematics, Yanbian University)
Hyun, Yuntak (Department of Mathematics, Hanyang University)
Yun, Sungsik (Department of Financial Mathematics, Hanshin University)
Publication Information
The Pure and Applied Mathematics / v.24, no.2, 2017 , pp. 109-127 More about this Journal
Abstract
In this paper, we solve the following quadratic ${\rho}-functional$ inequalities ${\parallel}f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z){\parallel}$ (0.1) ${\leq}{\parallel}{\rho}(f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\frac{1}{{\mid}4{\mid}}}$, and ${\parallel}f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z){\parallel}$ (0.2) ${\leq}{\parallel}{\rho}(f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\mid}8{\mid}$. Using the direct method, we prove the Hyers-Ulam stability of the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of quadratic ${\rho}-functional$ equations associated with the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.
Keywords
Hyers-Ulam stability; non-Archimedean normed space; quadratic ${\rho}-functional$ equation; quadratic ${\rho}-functional$ inequality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.   DOI
2 P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86.   DOI
3 G.Z. Eskandani & J.M. Rassias: Approximation of a general cubic functional equation in Felbin's type fuzzy normed linear spaces. Results Math. 66 (2014), 113-123.   DOI
4 W. Fechner: Stability of a functional inequalities associated with the Jordan-von Neumann functional equation. Aequationes Math. 71 (2006), 149-161.   DOI
5 P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-43.   DOI
6 A. Gilanyi: Eine zur Parallelogrammgleichung aquivalente Ungleichung. Aequationes Math. 62 (2001), 303-309.   DOI
7 A. Gilanyi: On a problem by K. Nikodem. Math. Inequal. Appl. 5 (2002), 707-710.
8 D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.   DOI
9 Pl. Kannappan: Quadratic functional equation and inner product spaces. Results Math. 27 (1995), 368-372.   DOI
10 J. Lee: Stability of functional equations in matrix random normed spaces: a fixed point approach. Results Math. 66 (2014), 99-112.   DOI
11 M.S. Moslehian & Gh. Sadeghi: A Mazur-Ulam theorem in non-Archimedean normed spaces. Nonlinear Anal.-TMA 69 (2008), 3405-3408.   DOI
12 C. Park, Y. Cho & M. Han: Functional inequalities associated with Jordan-von Neumann-type additive functional equations. J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
13 Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.   DOI
14 J. Ratz: On inequalities associated with the Jordan-von Neumann functional equation. Aequationes Math. 66 (2003), 191-200.   DOI
15 F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.   DOI
16 S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.