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ON INEQUALITIES OF GRONWALL TYPE

Sung Kyu Choi*, Bowon Kang**, and Namjip Koo***

Abstract. In this paper, we improve the results of [9] and give
an application to boundedness of the solutions of nonlinear integro-
differential equations.

1. Introduction

Inequalities of Gronwall type allow one to estimate a function that
is known to satisfy a certain differential or integral inequality. Also,
they play a very important role in the study of differential and integral
equations.

Growall [6] in 1919 proved the following :
Let u(t) be a continuous real valued function on J = [α, α + h] and

let

0 ≤ u(t) ≤
∫ t

α
[a + bu(s)]ds on J,

where a and b are nonnegative constants. Then

u(t) ≤ ahebh on J.

Another inequality of this type was proved in 1943 by Bellman [2] :
see Lemmma 2.1 in Section 2.

It is clear that Bellman’s result contains that of Gronwall. Inequal-
ities of this type were called ”Gronwall inequalites” or ”Inequalites
of Gronwall type ”, ” Bellman’s lemma or inequality” or sometimes
”Bellman-Gronwall” or ”Gronwall-Bellman” inequalites (see [8]).
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Due to various motivations, several generalizations and applications
of this inequality have been obtained [1, 2, 7, 8]. Pachpatte [10, 11] ob-
tained some general versions of this inequality. Oguntuase [9] established
some generalizations of the inequalities obtained in [10]. However, there
are some defects in the proofs of Theorems 2.1 and 2.7 in [9]. In this pa-
per, we improve the results of [9] and give an application to boundedness
of the solutions of nonlinear integro-differential equations.

2. Main results

Bellman [2] established the following basic integral inequality known
as Gronwall-Bellman inequality.

Lemma 2.1. Let u(t) and g(t) be nonnegative continuous functions
on R+ = [0,∞) for which the inequality

u(t) ≤ c +
∫ t

a
g(s)u(s)ds, t ∈ R+

holds, where c is a nonnegative constant. Then

u(t) ≤ x exp
(∫ t

a
g(s)ds

)

,

t ∈ R+.

We need to modify Theorem 2.1 in [9] into the following :

Theorem 2.2. Let u(t), f(t) be nonnegative continuous functions in
an interval I = [a, b]. Suppose that k(t, s) and kt(t, s) exist and are
nonnegative continuous functions for almost t, s ∈ I. If the inequality

(2.1) u(t) ≤ c +
∫ t

a
f(s)u(s)ds +

∫ t

a
f(s)

(∫ s

a
k(s, τ)u(τ)dτ

)
ds, t ∈ I

holds, where c is a nonnegative constant, then

u(t) ≤ c

[
1 +

∫ t

a
f(s) exp

(∫ s

a
(f(τ) + k(τ, τ) +

∫ τ

a
kτ (τ, σ)dσ)dτ

)
ds

]
.

Proof. Define a function v(t) by the right hand side of (2.1). Then

v′(t) = f(t)u(t) + f(t)
∫ t

a
k(t, τ)u(τ)dτ, v(a) = c

≤ f(t)(v(t) +
∫ t

a
k(t, τ)v(τ)dτ).(2.2)
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Letting

m(t) = v(t) +
∫ t

a
k(t, τ)v(τ)dτ, m(a) = v(a) = c,

which implies

m′(t) = v′(t) + k(t, t)v(t) +
∫ t

a
kt(t, τ)v(τ)dτ

≤ f(t)m(t) + k(t, t)m(t) +
∫ t

a
kt(t, τ)m(τ)dτ

≤ (f(t) + k(t, t) +
∫ t

a
kt(t, τ)dτ)m(t).(2.3)

Integrate (2.3) from a to t, we obtain

(2.4) m(t) ≤ c exp
(∫ t

a
f(s) + k(s, s) +

∫ s

a
ks(s, σ)dσds

)
.

Substitute (2.4) into (2.2) and then integrate it from a to t, we have

v(t) ≤ c

[
1 +

∫ t

a
f(s) exp

(∫ s

a
(f(τ) + k(τ, τ) +

∫ τ

a
kτ (τ, σ)dσ)dτ

)
ds

]
.

Hence the proof is complete.

Remark 2.3. Theorem 2.2 is useful to correct Theorem 2.1 and The-
orem 2.2 in [9].

Letting K(t, s) = h(t)g(s) in Theorem 2.2, we obtain the following corol-
lary.

Corollary 2.4. Let u(t), f(t), h(t) and g(t) be nonnegative contin-
uous functions in I = [a, b]. Suppose that h′(t) exists and is nonnegative
continuous function. If the following inequality

u(t) ≤ c +
∫ t

a
f(s)u(s)ds +

∫ t

a
f(s)h(s)(

∫ s

a
g(τ)u(τ)dτ)ds, t ∈ I

holds, where c is a nonnegative constant, then

u(t) ≤ c

[
1 +

∫ t

a
f(s) exp(

∫ s

a
(f(τ) + h(τ)g(τ) + h′(τ)

∫ τ

a
g(σ)dσ)dτ)ds

]
.

We will prove the following theorem by comparison with a differential
equation of Bernoulli type. To this end we need the following lemma.
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Lemma 2.5. [1, Lemma 4.1.] Let v(t) be a positive differentiable
function satisfying the inequality

(2.5) v′(t) ≤ b(t)v(t) + k(t)vp(t), t ∈ [a, b],

where the functions b and k are continuous in [a, b], and 0 ≤ p 6= 1 is a
constant. Then

v(t) ≤ exp
(∫ t

a
b(s)ds

)[
vq(a) + q

∫ t

a
k(s) exp

(
−q

∫ s

a
b(τ)dτ

)
ds

] 1
q

for t ∈ [a, b1), where q = 1 − p and b1 is chosen so that the following
expression

vq(a) + q

∫ t

a
k(s) exp

(
−q

∫ s

a
b(τ)dτ

)
ds

is positive in the subinterval [a, b1).

Remark 2.6. Note that (2.5) with p = 1 in Lemma 2.5 implies v(t) ≤
v0 exp(

∫ t
a(b(s) + k(s))ds) for t ≥ a. We obtain a comparison result for

linear differential inequalities.

Theorem 2.7. Let u(t), f(t) be nonnegative continuous functions in
an interval I = [a, b]. Suppose that k(t, s) and kt(t, s) exist and are
nonnegative continuous functions for almost t, s ∈ I. If the inequality

(2.6) u(t) ≤ c +
∫ t

a
f(s)u(s)ds +

∫ t

a
f(s)(

∫ s

a
k(s, τ)up(τ)dτ)ds, t ∈ I

holds, where 0 ≤ p 6= 1 and c is a nonnegative constant, then

u(t) ≤ c +
∫ t

a

{
f(s) exp

(∫ s

a
(f(τ)dτ

)
×

[
cq + q

∫ s

a
k(τ, τ) exp

(
−q

∫ τ

a
kτ (τ, σ)dσ)dτ

)] 1
q }

ds,(2.7)

where q = 1− p.

Proof. Define v(t) by the right member of (2.6). Then

v′(t) = f(t)u(t) + f(t)
∫ t

a
k(t, τ)up(τ)dτ, v(a) = c

≤ f(t)(v(t) +
∫ t

a
k(t, τ)vp(τ)dτ),(2.8)

by u(t) ≤ v(t) and up(t) ≤ vp(t) for 0 ≤ p 6= 1. Letting

m(t) = v(t) +
∫ t

a
k(t, τ)vp(τ)dτ, m(a) = v(a) = c,
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which implies

m′(t) = v′(t) + k(t, t)vp(t) +
∫ t

a
kt(t, τ)vp(τ)dτ

≤ f(t)m(t) + k(t, t)mp(t) +
∫ t

a
kt(t, τ)mp(τ)dτ

≤ f(t)m(t) +
[
k(t, t) +

∫ t

a
kt(t, τ)dτ

]
mp(t).(2.9)

By Lemma 2.5 we have

m(t) ≤ exp
(∫ t

a
f(s)ds

)
[mq(a) + q

∫ t

a
((k(s, s)

+
∫ s

a
ks(s, σ)dσ) exp(−q

∫ s

a
f(τ)dτ))ds]

1
q ,(2.10)

where q = 1− p. Substitute (2.10) into (2.8) and then integrate it from
a to t, we have

v(t) ≤ c +
∫ t

a

{
f(s) exp

(∫ s

a
f(τ)dτ

) [
cq

+ q

∫ s

a

(
(k(τ, τ) +

∫ τ

a
kτ (τ, σ)dσ) exp[−q

∫ τ

a
f(σ)dσ]

)
dτ

] 1
q
}

ds,

where q = 1− p. Hence the proof is complete.

Corollary 2.8. Let u(t), f(t), h(t) and g(t) be nonnegative contin-
uous functions in I = [a, b]. Suppose that h′(t) exists and is nonnegative
continuous function. If the following inequality

u(t) ≤ c +
∫ t

a
f(s)u(s)ds +

∫ t

a
f(s)h(s)(

∫ s

a
g(τ)up(τ)dτ)ds, t ∈ I

holds, where 0 ≤ p 6= 1 and c is a positive constant, then

u(t) ≤ c +
∫ t

a
f(s) exp

(∫ s

a
(f(τ)dτ

)
[cq + q

∫ s

a
[h(τ)g(τ)

+h′(τ)
∫ τ

a
g(σ)dσ] exp

(
−q

∫ τ

a
kτ (τ, σ)dσ)dτ

)
ds]

1
q , t ∈ I

where q = 1− p.
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3. Application

We give an application of our results. We consider the linear integro-
differential equation

(3.1) x′(t) = A(t)x(t) +
∫ t

t0

B(t, s)x(s)ds,

where A(t) and B(t, s) are continuous n × n matrices on R+ and R2
+,

respectively, and its perturbed equation

(3.2) u′(t) = A(t)u(t)+
∫ t

t0

B(t, s)u(s)ds+h(t, u(t),
∫ t

t0

k(t, s, u(s))ds),

where k ∈ C(R+ × R+ × Rn,Rn) and h ∈ C(R+ × Rn × Rn,Rn).
Let x(t) = x(t, t0, x0) and u(t) = u(t, t0, x0) be denoted by the unique

solutions of (3.1) and (3.2), respectively with x(t0) = u(t0) = x0. Then
the unique solution u(t) of (3.2) is given by

u(t) = R(t, t0)x0 +
∫ t

t0

R(t, s)h(s, u(s),
∫ s

t0

k(s, σ, u(σ))dσ)ds, t ≥ t0,

where R(t, s) is the solution of the initial value problem

(3.3)
∂R

∂s
(t, s) + R(t, s)A(s) +

∫ t

s
R(t, σ)B(σ, s)dσ,

R(t, t) = I for 0 ≤ s ≤ t < ∞, I being the identity matrix (see [7]).

Theorem 3.1. Suppose that the following inequalities hold:

(i) |R(t, s)| ≤ Me−α(t−s),
(ii) |R(t, s)h(s, u, z)| ≤ p(s)(|u|+ |z|),
(iii) |k(t, s, u)| ≤ q(t, s)|u|, t ≥ s ≥ 0,

where M ≥ 1 and α > 0 are constants. If p(t), q(t, t) and qt(t, τ) are
continuous and nonnegative, and satisfies

∫ ∞

0
p(s)ds < ∞,

∫ ∞

0
(q(τ, τ) +

∫ τ

t0

qτ (τ, σ)dσ)dτ < ∞,

then all solutions of (3.2) are bounded in R+.



On inequalities of gronwall type 567

Proof. By the assumptions, we obtain

|u(t)| ≤ |R(t, t0)||x0|+
∫ t

t0

|R(t, s)h(s, u(s),
∫ s

t0

k(s, σ, u(σ))dσ)|ds

≤ M |x0|+
∫ t

t0

p(s)(|u(s)|+
∫ s

t0

q(s, σ)|u(σ)|dσ)ds

≤ M |x0|+
∫ t

t0

p(s)|u(s)|ds +
∫ t

t0

p(s)
∫ s

t0

q(s, σ)|u(σ)|dσds

for all t ≥ t0. By Theorem 2.2, we have

|u(t)| ≤ M |x0|[1 +
∫ t

t0

p(s) exp(
∫ s

t0

(p(τ)

+ q(τ, τ) +
∫ τ

t0

qτ (τ, σ)dσ)dτ)ds]

≤ d|x0|,
where d = M [1 +

∫∞
t0

p(s) exp(
∫ s
t0

(p(τ) + q(τ, τ) +
∫ τ
t0

qτ (τ, σ)dσ)dτ)ds].
Hence the solution u(t) of (3.2) is bounded in R+ and the proof is com-
plete.
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