References
- M. Albert and J. A. Baker, Bounded solutions of a functional inequality, Canad. Math. Bull. 25 (1982), no. 4, 491-495. https://doi.org/10.4153/CMB-1982-071-9
- J. A. Baker, J. Lawrence, and F. Zorzitto, The stability of the equation f(x + y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), no. 2, 242-246.
- J. Chung, On an exponential functional inequality and its distributional version, Canad. Math. Bull. 58 (2015), no. 1, 30-43. https://doi.org/10.4153/CMB-2014-012-x
- J. Chung and J. Chang, On two functional equations originating from number theory, Proc. Indian Acad. Sci. Math. Sci. 124 (2014), no. 4, 563-572. https://doi.org/10.1007/s12044-014-0200-9
- J. Chung, T. Riedel, and P. K. Sahoo, Stability of functional equations arising from number theory and determinant of matrices, preprint.
- J. K. Chung and P. K. Sahoo, General solution of some functional equations related to the determinant of some symmetric matrices, Demonstratio Math. 35 (2002), no. 3, 539-544.
- D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables, Birkhauser, 1998.
- K. B. Houston and P. K. Sahoo, On two functional equations and their solutions, Appl. Math. Lett. 21 (2008), no. 9, 974-977. https://doi.org/10.1016/j.aml.2007.10.012
- S. M. Jung and J. H. Bae, Some functional equations originating from number theory, Proc. Indian Acad. Sci. Math. Sci. 113 (2003), no. 2, 91-98. https://doi.org/10.1007/BF02829761
Cited by
- Solution of a general pexiderized permanental functional equation vol.129, pp.1, 2019, https://doi.org/10.1007/s12044-018-0454-8