• Title/Summary/Keyword: ESD (electrostatic discharge)

Search Result 101, Processing Time 0.029 seconds

Effects on the ESD Protection Performance of PPS(PMOS Pass Structure) Embedded N-type Silicon Controlled Rectifier Device with different Partial P-Well Structure (PPS 소자가 삽입된 N형 SCR 소자에서 부분웰 구조가 정전기 보호 성능에 미치는 영향)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.63-68
    • /
    • 2014
  • Electrostatic Discharge(ESD) protection performance of PPS(PMOS pass structure) embedded N-type silicon controlled rectifier(NSCR_PPS) device with different partial p-well(PPW) structure was discussed for high voltage I/O applications. A conventional NSCR_PPS standard device shows typical SCR-like characteristics with low on-resistance, low snapback holding voltage and low thermal breakdown voltage, which may cause latch-up problem during normal operation. However, our proposed NSCR_PPS devices with modified PPW demonstrate the stable ESD protection performance with high latch-up immunity.

High Current Behavior and Double Snapback Mechanism Analysis of Gate Grounded Extended Drain NMOS Device for ESD Protection Device Application of DDIC Chip (DDIC 칩의 정전기 보호 소자로 적용되는 GG_EDNMOS 소자의 고전류 특성 및 더블 스냅백 메커니즘 분석)

  • Yang, Jun-Won;Kim, Hyung-Ho;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.36-43
    • /
    • 2013
  • In this study, the high current behaviors and double snapback mechanism of gate grounded_extended drain n-type MOSFET(GG_EDNMOS) device were analyzed in order to realize the robust electrostatic discharge(ESD) protection performances of high voltage operating display driver IC(DDIC) chips. Both the transmission line pulse(TLP) data and the thermal incorporated 2-dimensional simulation analysis as a function of ion implant conditions demonstrate a characteristic double snapback phenomenon after triggering of bipolar junction transistor(BJT) operation. Also, the background carrier density is proven to be a critical factor to affect the high current behavior of the GG_EDNMOS devices.

On-chip ESD protection design by using short-circuited stub for RF applications (Short-Circuited Stub를 이용한 RF회로에서의 정전기 방지)

  • 박창근;염기수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.288-292
    • /
    • 2002
  • We propose the new type of on-chip ESD protection method for RF applications. By using the properties of RF circuits, we can use the short-circuited stub as ESD protection device in front of the DC blocking capacitor Specially, we can use short-circuited stub as the portion of the matching circuit so to reduce the and various parameters of the transmission line. This new type ESD protection method is very different from the conventional ESD protection method. With the new type ESD protection method, we remove the parasitic capacitance of ESD protection device which degrade the performance of core circuit.

  • PDF

ESD Design and Analysis Tools for LEO SAT (저궤도 위성의 ESD 설계 및 해석도구)

  • Lim, Seong-Bin;Kim, Tae-Youn;Jang, Jae-Woong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.68-78
    • /
    • 2009
  • In this paper, the electrostatic charging and discharging mechanism, and its effects in space plasma environment are reviewed and the system design control documents, ESD analysis tools and modelling techniques, and the SPIS program in Europe are introduced. A design of the satellite system against the electrostatic discharge (ESD) effects in space plasma environments is carefully taken into account at the early stage of development. In a view of the space system design, it really depended on the mission of system, electrical and mechanical configuration, system operation, and orbit condition. Behavior of the electrons and the ions in those environments may be occurred the sever problem to the satellite operation. So it is carefully understood for implementation of the satellite system. By this reason, the space environments and its effects have been comprehensively studied in U.S.A and Europe.

  • PDF

A Study on the Design of the Output ESD Protection Circuits and their Electrical Characteristics (출력단 ESD 보호회로의 설계 및 그 전기적 특성에 관한 연구)

  • 김흥식;송한정;김기홍;최민성;최승철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.11
    • /
    • pp.97-106
    • /
    • 1992
  • In integrated circuits, protection circuits are required to protect the internal nodes from the harmful ESD(Electrostatic discharge). This paper discusses the characteristics of the circuit components in ESD protection circuitry in order to analyze the ESD phenomina, and the design methodalogy of ESD protection circuits, using test pattern with a variation of the number of diode and transistor. The test devices are fabricated using a 0.8$\mu$m CMOS process. SPICE simulation was also carried out to relate output node voltage and measured ESD voltage. With increasing number of diodes and transistors in protection circuit, the ESD voltage also increases. The ESD voltage of the bi-directional circuit for both input and output was 100-300[V], which in higher than that of only output(uni-directional) circuit. In addition, the ESD protection circuit with the diode under the pad region was useful for the reduction of chip size and parasitic resistance. In this case, ESD voltage was improved to a value about 400[V].

  • PDF

Studies on improvement scheme of Electro-Static Discharge protection of GaN based LEDs (갈륨나이트라이드기반 발광다이오드의 정전기방전 피해 방지에 대한 연구)

  • Choi, Sung Jai;Lee, Won Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.35-40
    • /
    • 2008
  • High performance light emitting diodes(LEDs) have been developed using GaN-based materials grown on sapphire substrates in recent years. Although these LEDs are already commercially available, we have to consider electrostatic discharge(ESD) damage related to both basic materials of diode and miniaturization of LEDs. ESD damage is one of the important parameters influencing reliability of the light emitting devices. We investigated mass production of GaN-based LEDs suffered from ESD during production process and present the solutions in order to improve the ESD problem. Most of EDS problems were controlled by using instruments properly and improvement of the process circumstances as well.

  • PDF

Characteristics of N-Type Extended Drain Silicon Controlled Rectifier ESD Protection Device (NED-SCR 정전기보호소자의 특성)

  • Seo, Y.J.;Kim, K.H.;Lee, W.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1370-1371
    • /
    • 2006
  • An electrostatic discharge (ESD) protection device, so called, N-type extended drain silicon controlled rectifier (NEDSCR) device, was analyzed for high voltage I/O applications. A conventional NEDSCR device shows typical SCR-like characteristics with extremely low snapback holding voltage. This may cause latchup problem during normal operation. However, a modified NEDSCR device with proper junction / channel engineering demonstrates itself with both the excellent ESD protection performance and the high latchup immunity.

  • PDF

Design of a Gate-VDD Drain-Extended PMOS ESD Power Clamp for Smart Power ICs (Smart Power IC를 위한 Gate-VDD Drain-Extened PMOS ESD 보호회로 설계)

  • Park, Jae-Young;Kim, Dong-Jun;Park, Sang-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.1-6
    • /
    • 2008
  • The holding voltage of the high-voltage MOSFETs in snapback condition is much smaller than the power supply voltage. Such characteristics may cause the latcup-like problems in the Smart Power ICs if these devices are directly used in the ESD (Electrostatic Discharge) power clamp. In this work, a latchup-free design based on the Drain-Extended PMOS (DEPMOS) adopting gate VDD structure is proposed. The operation region of the proposed gate-VDD DEPMOS ESD power clamp is below the onset of the snapback to avoid the danger of latch-up. From the measurement on the devices fabricated using a $0.35\;{\mu}m$ BCD (Bipolar-CMOS-DMOS) Process (60V), it was observed that the proposed ESD power clamp can provide 500% higher ESD robustness per silicon area as compared to the conventional clamps with gate-driven LDMOS (lateral double-diffused MOS).

A Study on the Development of Simulating Tool for Evaluation of Electrostatic Discharge (정전기 방전 평가를 위한 간이형 도구 개발에 관한 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.15-22
    • /
    • 2011
  • Explosion and fire cause about 30 reported industrial major accidents a year by ignition source which discharge of electrostatic generated to flammable gas, vapor, dust and mixtures. It brings economically and humanly very large loss that accident was caused by fire and explosion from electrostatic discharge. Thus, it is very important that electrostatic discharge energy is to be control below not to be igniting flammable mixtures. There are two kinds of analysis model for electrostatic discharge, human body model and machine model. Human body model is available the parameter of human's electrical equivalent that capacitance is 100 pF, resistance is $1.5k{\Omega}$. To simulate and visualize the electrostatic discharge from human body need a very expensive and high voltage simulator. In this paper, we measured the value of capacitance and resistance concerned with test materials and sizing of specimen and the value of charged voltage concerned with test specimen and distance to develop an electrostatic charge/discharge simulating tool for teaching with which concerned industrial employee and students. The result of experiments, we conformed that the minimum ignition energy of methane-oxygen mixtures meets well the equation $W=1/2CV^2$, and found out that the insulating material and sizing of equivalent value having human body mode are the poly ethylene of 200 mm and 300 mm of diameter. Developed electrostatic charge/discharge simulating tool has many merits; simple mechanism, low cost, no need of electric power and so on.

A Study on GCNMOS-based ESD Protection Circuit Using Floating-Body Technique With Low Trigger Voltage (Floating-Body기술을 이용한 낮은 트리거 전압을 갖는 GCNMOS 기반의 ESD 보호회로에 관한 연구)

  • Jeong, Jun-Mo
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.150-153
    • /
    • 2017
  • In this paper, a structure of GCNMOS based ESD protection circuit using floating-body technique is proposed. TCAD simulation of Synopsys was used to compare with the conventional GGNMOS and GCNMOS. Compared with the conventional GCNMOS, the proposed ESD protection circuit has lower trigger voltage and faster turn-on-time than conventional circuit because of the added NMOSFET. In the simulation result, the triggering voltage of the proposed ESD protection circuit is 4.86V and the turn-on-time is 1.47ns.