• 제목/요약/키워드: Drain Bias

검색결과 204건 처리시간 0.031초

Hysteresis Characteristics in Low Temperature Poly-Si Thin Film Transistors

  • Chung, Hoon-Ju;Kim, Dae-Hwan;Kim, Byeong-Koo
    • Journal of Information Display
    • /
    • 제6권4호
    • /
    • pp.6-10
    • /
    • 2005
  • The dependence of hysteresis characteristics in low temperature poly-Si (LTPS) thin film transistors (TFTs) on the gate-source voltage (Vgs) or the drain-source voltage (Vds) bias is investigated and discussed. The hysteresis levels in both p-type and n-type LTPS TFTs are independent of Vds bias but increase as the sweep range of Vgs increases. It has been found that the hysteresis in both p-type and n-type LTPS TFTs originated from charge trapping and de-trapping in the channel region rather than at the source/drain edges.

Enhanced Electrical Performance of SiZnSnO Thin Film Transistor with Thin Metal Layer

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권3호
    • /
    • pp.141-143
    • /
    • 2017
  • Novel structured thin film transistors (TFTs) of amorphous silicon zinc tin oxide (a-SZTO) were designed and fabricated with a thin metal layer between the source and drain electrodes. A SZTO channel was annealed at $500^{\circ}C$. A Ti/Au electrode was used on the SZTO channel. Metals are deposited between the source and drain in this novel structured TFTs. The mobility of the was improved from $14.77cm^2/Vs$ to $35.59cm^2/Vs$ simply by adopting the novel structure without changing any other processing parameters, such as annealing condition, sputtering power or processing pressure. In addition, stability was improved under the positive bias thermal stress and negative bias thermal stress applied to the novel structured TFTs. Finally, this novel structured TFT was observed to be less affected by back-channel effect.

저온제작 Poly-Si TFT′s의 누설전류 (Leakage Current Low-Temperature Processed Poly-Si TFT′s)

  • 진교원;이진민;김동진;김영호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.90-93
    • /
    • 1996
  • The conduction mechanisms of the off-current in low temperature ($\leq$600$^{\circ}C$) processed polycrystalline silicon thin film transistors (LTP poly-Si TFT's) has been systematically studied. Especially, the temperature and bias dependence of the off-current between unpassivated and passivated poly-Si TFT's was investigated and compared. The off-current of unpassivated poly-Si TFT's is due to a resistive current at low gate and drain voltage, thermal emission current at high gate, low drain voltage, and field enhanced thermal emission current in the depletion region near the drain at high gate and drain voltage. After hydrogenation, it was observed that the off-currents were remarkably reduced by plasma-hydrogenation. It was also observed that the off-currents of the passivated poly-Si TFT's are more critically dependent on temperature rather than electric field.

  • PDF

Switching Characteristics of Amorphous GeSe TFT for Switching Device Application

  • 남기현;김장한;조원주;정홍배
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.403-404
    • /
    • 2012
  • We fabricated TFT devices with the GeSe channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is high. Based on the experiments, we draw the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF

Electrical Switching Characteristics of Thin Film Transistor with Amorphous Chalcogenide Channel

  • 남기현;김장한;정홍배
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.280-281
    • /
    • 2011
  • We fabricated the devices of TFT type with the amorphous chalcogenide channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is about 4 order. Based on the experiments, we contained the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF

저온 제작 다결정 실리콘 박막 트랜지스터의 off-current메카니즘에 관한 연구 (A study on the off-current mechanism of poly-Si thin film transistors fabricated at low temperature)

  • 진교원;김진;이진민;김동진;조봉희;김영호
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권10호
    • /
    • pp.1001-1007
    • /
    • 1996
  • The conduction mechanisms of the off-current in low temperature (.leq. >$600^{\circ}C$) processed polycrystalline silicon thin film transistors (LTP poly-Si TFT'S) have been systematically studied. Especially, the temperature and bias dependence of the off-current between hydrogenated and nonhydrogenated poly-Si TFT's were investigated and compared. The off-current of nonhydrogenated poly-Si TF's is because of a resistive current at low gate and drain voltage, thermally activated current at high gate and low drain voltage, and Poole-Frenkel emission current in the depletion region near the drain at high gate and drain voltage. After hydrogenation it has shown that the off -current mechanism is caused mainly by thermal activation and that the field-induced current component is suppressed.

  • PDF

Current Increase Effect and Prevention for Electron Trapping at Positive Bias Stress System by Dropping the Nematic Liquid Crystal on the Channel Layer of the a-InGaZnO TFT's

  • Lee, Seung-Hyun;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.163-163
    • /
    • 2015
  • The effect of nematic liquid crystal(5CB-4-Cyano-4'-pentylbiphenyl) on the amorphous indium gallium zinc oxide thin film transistors(a-IGZO TFTs) was investigated. Through dropping the 5CB on the a-IGZO TFT's channel layer which is deposited by RF-magnetron sputtering, properties of a-IGZO TFTs was dramatically improved. When drain bias was induced, 5CB molecules were oriented by Freedericksz transition generating positive charges to one side of dipoles. From increment of the capacitance by orientation of liquid crystals, the drain current was increased, and we analyzed these phenomena mathematically by using MOSFET model. Transfer characteristic showed improvement such as decreasing of subthreshold slope(SS) value 0.4 to 0.2 and 0.45 to 0.25 at linear region and saturation region, respectively. Furthermore, in positive bias system(PBS), prevention effect for electron trapping by 5CB liquid crystal dipoles was observed, which showing decrease of threshold voltage shift [(${\delta}V$]_TH) when induced +20V for 1~1000sec at the gate electrode.

  • PDF

The effect of negative bias stress stability in high mobility In-Ga-O TFTs

  • Jo, Kwang-Min;Sung, Sang-Yun;You, Jae-Lok;Kim, Se-Yun;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2013
  • In this work, we investigated the characteristics and the effects of light on the negative gate bias stress stability (NBS) in high mobility polycrystalline IGO TFTs. IGO TFT showed a high drain current on/off ratio of ${\sim}10^9$, a field-effect mobility of $114cm^2/Vs$, a threshold voltage of -4V, and a subthresholdslpe(SS) of 0.28V/decade from log($I_{DS}$) vs $V_{GS}$. IGO TFTs showed large negative $V_{TH}$ shift(17V) at light power of $5mW/cm^2$ with negative gate bias stress of -10V for 10000seconds, at a fixed drain voltage ($V_{DS}$) of 0.5V.

  • PDF

서로 다른 소스/드레인 전극물질을 이용한 비정질 In-Ga-Zn-O 박막트랜지스터 성능향상 (Performance Improvement of Amorphous In-Ga-Zn-O Thin-film Transistors Using Different Source/drain Electrode Materials)

  • 김승태;조원주
    • 한국전기전자재료학회논문지
    • /
    • 제29권2호
    • /
    • pp.69-74
    • /
    • 2016
  • In this study, we proposed an a-IGZO (amorphous In-Ga-Zn-O) TFT (thin-film transistor) with off-planed source/drain structure. Furthermore, two different electrode materials (ITO and Ti) were applied to the source and drain contacts for performance improvement of a-IGZO TFTs. When the ITO with a large work-function and the Ti with a small work-function are applied to drain electrode and source contact, respectively, the electrical performances of a-IGZO TFTs were improved; an increased driving current, a decreased leakage current, a high on-off current ratio, and a reduced subthreshold swing. As a result of gate bias stress test at various temperatures, the off-planed S/D a-IGZO TFTs showed a degradation mechanism due to electron trapping and both devices with ITO-drain or Ti-drain electrode revealed an equivalent instability.

드레인 전류 잡음원만을 고려한 스케일링이 가능한 바이어스 의존 P-HEMT 잡음모델 (A Scalable Bias-dependent P-HEMT Noise Model with Single Drain Current Noise Source)

  • 윤경식
    • 한국통신학회논문지
    • /
    • 제24권10A호
    • /
    • pp.1579-1587
    • /
    • 1999
  • 게이트 길이가 $0.2\mu\textrm{m}$인 P-HEMT에 대하여 드레인 바이어스 전류의 변화 및 게이트 폭에 대해 스케일링이 가능한 잡음모델을 제안하였다. 본 논문에서는 S-파라미터를 정확히 예측하기 위하여 $\tau$를 제외한 intrinsic 파라미터는 offset를 도입하여 정규화 한 후 스케일링을 하였다. 드레인 포화전류에 대한 드레인 전류의 비율과 게이트 폭을 변수로 하는 소신호 모델 파라미터의 맞춤함수를 구하였다. 또한, 잡음 파라미터를 정확히 예측하기 위하여 진성저항 잡음 온도 $\textrm{T}_{g}$, 게이트 단 전류 잡음원 등가잡음 컨덕턴스 $\textrm{G}_{ni}$, 드레인 단 전류와 게이트 폭에 거의 관계없으며 이의 평균값은 주변온도와 유사한 값으로 $\textrm{G}_{ni}$는 회로 특성에 영향을 미치지 않을 정도로 작은 값으로 추출되었다. 그러므로, $\textrm{G}_{no}$만을 잡음 모델정수로 하는 잡음모델과 $\textrm{T}_{g}$, $\textrm{G}_{ni}$, $\textrm{G}_{no}$를 잡음 모델정수로 하는 잡음모델을 측정값과 비교하여 본 결과 Gno만을 갖는 잡음모델도 측정된 잡음 파라미터와 잘 일치하였다. 따라서, 모델 정수추출이 간단한 $\textrm{G}_{no}$만을 갖는 잡음모델은 게이트 폭과 바이어스 전류에 대해 스케일링이 가능한 실용적인 잡음모델임을 확인하였다.

  • PDF