• 제목/요약/키워드: Dirichlet spaces

검색결과 19건 처리시간 0.019초

SCHATTEN CLASSES OF COMPOSITION OPERATORS ON DIRICHLET TYPE SPACES WITH SUPERHARMONIC WEIGHTS

  • Zuoling Liu
    • 대한수학회보
    • /
    • 제61권4호
    • /
    • pp.875-895
    • /
    • 2024
  • In this paper, we completely characterize the Schatten classes of composition operators on the Dirichlet type spaces with superharmonic weights. Our investigation is basced on building a bridge between the Schatten classes of composition operators on the weighted Dirichlet type spaces and Toeplitz operators on weighted Bergman spaces.

Multipliers on the dirichlet space $D(Omega)$

  • Nah, Young-Chae
    • 대한수학회논문집
    • /
    • 제10권3호
    • /
    • pp.633-642
    • /
    • 1995
  • Recently S. Axler proved that every sequence in the unit disk U converging to the boundary contains an interpolating subsequence for the multipliers of the Dirichlet space D(U). In this paper we generalizes Axler's result to the finitely connected planer domains such that the Dirichlet spaces are contained in the Bergman spaces.

  • PDF

ON A CLASS OF REFLEXIVE TOEPLITZ OPERATORS

  • HEDAYATIAN, K.
    • 호남수학학술지
    • /
    • 제28권4호
    • /
    • pp.543-547
    • /
    • 2006
  • We will use a result of Farrell, Rubel and Shields to give sufficient conditions under which a Toeplitz operator with conjugate analytic symbol to be reflexive on Dirichlet-type spaces.

  • PDF

EXISTENCE OF INFINITELY MANY SOLUTIONS FOR A CLASS OF NONLOCAL PROBLEMS WITH DIRICHLET BOUNDARY CONDITION

  • Chaharlang, Moloud Makvand;Razani, Abdolrahman
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.155-167
    • /
    • 2019
  • In this article we are concerned with some non-local problems of Kirchhoff type with Dirichlet boundary condition in Orlicz-Sobolev spaces. A result of the existence of infinitely many solutions is established using variational methods and Ricceri's critical points principle modified by Bonanno.

Generalized Integration Operator between the Bloch-type Space and Weighted Dirichlet-type Spaces

  • Ardebili, Fariba Alighadr;Vaezi, Hamid;Hassanlou, Mostafa
    • Kyungpook Mathematical Journal
    • /
    • 제60권3호
    • /
    • pp.519-534
    • /
    • 2020
  • Let H(𝔻) be the space of all holomorphic functions on the open unit disc 𝔻 in the complex plane ℂ. In this paper, we investigate the boundedness and compactness of the generalized integration operator $$I^{(n)}_{g,{\varphi}}(f)(z)=\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^z\;f^{(n)}({\varphi}({\xi}))g({\xi})\;d{\xi},\;z{\in}{\mathbb{D}},$$ between Bloch-type and weighted Dirichlet-type spaces, where 𝜑 is a holomorphic self-map of 𝔻, n ∈ ℕ and g ∈ H(𝔻).

DIRICHLET FORMS, DIRICHLET OPERATORS, AND LOG-SOBOLEV INEQUALITIES FOR GIBBS MEASURES OF CLASSICAL UNBOUNDED SPIN SYSTEM

  • Lim, Hye-Young;Park, Yong-Moon;Yoo, Hyun-Jae
    • 대한수학회지
    • /
    • 제34권3호
    • /
    • pp.731-770
    • /
    • 1997
  • We study Diriclet forms and related subjects for the Gibbs measures of classical unbounded sping systems interacting via potentials which are superstable and regular. For any Gibbs measure $\mu$, we construct a Dirichlet form and the associated diffusion process on $L^2(\Omega, d\mu), where \Omega = (R^d)^Z^\nu$. Under appropriate conditions on the potential we show that the Dirichlet operator associated to a Gibbs measure $\mu$ is essentially self-adjoint on the space of smooth bounded cylinder functions. Under the condition of uniform log-concavity, the Gibbs measure exists uniquely and there exists a mass gap in the lower end of the spectrum of the Dirichlet operator. We also show that under the condition of uniform log-concavity, the unique Gibbs measure satisfies the log-Sobolev inequality. We utilize the general scheme of the previous works on the theory in infinite dimensional spaces developed by e.g., Albeverio, Antonjuk, Hoegh-Krohn, Kondratiev, Rockner, and Kusuoka, etc, and also use the equilibrium condition and the regularity of Gibbs measures extensively.

  • PDF