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EXISTENCE OF INFINITELY MANY SOLUTIONS FOR A

CLASS OF NONLOCAL PROBLEMS WITH DIRICHLET

BOUNDARY CONDITION

Moloud Makvand Chaharlang and Abdolrahman Razani

Abstract. In this article we are concerned with some non-local problems
of Kirchhoff type with Dirichlet boundary condition in Orlicz-Sobolev

spaces. A result of the existence of infinitely many solutions is established

using variational methods and Ricceri’s critical points principle modified
by Bonanno.

1. Introduction

In this article the following Kirchhoff type problem in Orlicz-Sobolev space
is studied.

(1.1)

{
−M(

∫
Ω

Φ(|∇u|) dx)div(a(|∇u|)∇u) = λf(x, u) + µg(x, u) in Ω,

u = 0 on ∂Ω,

where M : [0,+∞) → R is a continuous function such that there exists a
positive number m with M(t) ≥ m for all t ≥ 0. Notice that if ϕ(t) = p|t|p−2t

and Φ(t) =
∫ t

0
ϕ(s) ds for all t ∈ R, then problem (1.1) becomes the well-known

p-Kirchhoff type equation

(1.2)

{
−M(

∫
Ω
|∇u|p dx)∆pu = λf(x, u) + µg(x, u) in Ω,

u = 0 on ∂Ω.

It is related to the stationary version of the Kirchhoff equation

(1.3) ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)
∂2u

∂x2
= 0,

proposed by Kirchhoff, see [19]. This equation is an extension of the classical
d’Alembert’s wave equation by considering the effects of the length changes
of the string produced by transverse vibrations. Since the first equation in
(1.2) contains an integral over Ω, it is no longer a pointwise identity, and
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therefore it is often called a nonlocal problem. This problem models several
physical and biological systems, where u describes a process which depends on
the average of itself, such as the population identity, see [9]. The parameters in
(1.3) have the following meanings: h is the cross-section area, E is the Young
modulus, ρ is the mass density, L is the length of the string, and P0 is the initial
tension. In recent years, p-Kirchhoff type problems have been studied by many
researchers, we refer to [2, 8, 14, 21, 22, 27, 28] in which the authors have used
different techniques to obtain the existence of solutions for (1.2). This problem
in the case when p(·) is a continuous function, has also been studied in many
papers, see for instance [6, 10, 13, 15, 16]. Also the problem (1.1) is studied in
[18] with different boundary condition. Assume that a : (0,+∞) → R is a
function such that the mapping, defined by

(1.4) ϕ(t) :=

{
a(|t|)t t 6= 0,

0 t = 0,

is an odd, strictly increasing homeomorphism from R onto R. We can refer to [7,
17,23,24] for some nonlinear and nonhomogeneous versions of the problem (1.1)
(when M(t) ≡ 1), which have been studied in Orlicz-Sobolev spaces. Motivated
by the works above, we study the existence of weak solutions for problem (1.1),
which is an extension from the previous studies on nonlocal problems in classical
Sobolev spaces and on nonhomogeneous problems in Orlicz-Sobolev spaces.

2. Preliminaries

Now we introduce the spaces needed to study the problem (1.1), and give
a brief review of some concepts and facts of Orlicz and Orlicz-Sobolev spaces,
which are useful for our aim. We refer the readers for more details to [1, 7, 11,
12,23–25].

Let Ω be a bounded domain in RN (N ≥ 3), with smooth boundary ∂Ω.
f, g : Ω̄×R→ R are two L1-Carathéodory functions, and λ > 0 and µ ≥ 0 are
two parameters. For ϕ : R→ R defined in (1.4), set

Φ(t) =

∫ t

0

ϕ(s) ds ∀t ∈ R,

on which we will impose some suitable condition later.
We see that Φ is a young function, i.e., Φ(0)=0, Φ is convex, and limt→∞ Φ(t)

= +∞. Furthermore since Φ(t) = 0 if and only if t = 0,

lim
t→0

Φ(t)

t
= 0, and lim

t→∞

Φ(t)

t
= +∞.

The function Φ is then called an N -function. The function Φ∗ defined by

Φ∗(t) =

∫ t

0

ϕ−1(s) ds, ∀t ∈ R,
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is called the complementary function of Φ and it satisfies,

Φ∗(t) = sup{st− Φ(s) : s ≥ 0}, ∀t ≥ 0.

We observe that the function Φ∗ is also an N -function and the following young’s
inequality holds

st ≤ Φ(s) + Φ∗(t), ∀s, t ≥ 0.

The Orlicz class defined by the N -function Φ is the set

KΦ(Ω) :=

{
u : Ω→ R measurable;

∫
Ω

Φ(|u(x)|) dx <∞
}
,

and the Orlicz space LΦ(Ω) is then defined as the linear hull of the set KΦ(Ω).
The space LΦ(Ω) is a Banach space under the following Luxemburg norm,

‖u‖Φ := inf

{
k > 0;

∫
Ω

Φ

(
u(x)

k

)
dx ≤ 1

}
,

or the equivalent Orlicz norm

‖u‖LΦ := sup

{∣∣∣∣∫
Ω

u(x)v(x) dx

∣∣∣∣ ; v ∈ KΦ∗(Ω);

∫
Ω

Φ∗(|v(x)|) dx ≤ 1

}
.

The Orlicz-Sobolev space W 1,Φ(Ω) is the space defined by

W 1,Φ(Ω) :=

{
u ∈ LΦ(Ω);

∂u

∂xi
∈ LΦ(Ω); i = 1, 2, . . . , N

}
,

and it is a Banach space with respect to the norm

‖u‖1,Φ := ‖u‖Φ + ‖|∇u|‖Φ.

Now, we introduce the Orlicz-Sobolev space W 1,Φ
0 (Ω) as the closure of C∞0 (Ω)

in W 1,Φ(Ω) which can be renormed by the equivalent norm

‖u‖ := ‖|∇u|‖Φ.
Assume that Φ satisfies the following hypotheses;

1 < lim inf
t→∞

tϕ(t)

Φ(t)
≤ ϕ0 := sup

t>0

tϕ(t)

Φ(t)
<∞,(2.1)

N < ϕ0 := inf
t>0

tϕ(t)

Φ(t)
< lim inf

t→∞

log(Φ(t))

log(t)
,(2.2)

we also need the following condition

(2.3) the function t→ Φ(
√
t) is convex for all t ∈ [0,∞).

Assumption (2.1) is equivalent with the fact that Φ and Φ∗ both satisfy the
∆2-condition (at infinity) [23]. Actually ∆2-condition for Φ assures that both

LΦ(Ω) and W 1,Φ
0 (Ω) are separable and ∆2-condition for Φ and (2.3) assure

that LΦ(Ω) is a uniformly convex space and thus a reflexive Banach space

[23]. Consequently the Orlicz-Sobolev space W 1,Φ
0 (Ω) is also a reflexive Banach

space.
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Proposition 2.1 (see [7, 23,24]). Let u ∈W 1,Φ
0 (Ω). Then;

‖u‖ϕ
0

≤
∫

Ω

Φ(|∇u|) dx ≤ ‖u‖ϕ0 ; if ‖u‖ < 1,

‖u‖ϕ0 ≤
∫

Ω

Φ(|∇u|) dx ≤ ‖u‖ϕ
0

; if ‖u‖ > 1.

Lemma 2.1. Let u ∈W 1,Φ
0 (Ω) and

(2.4)

∫
Ω

Φ(|∇u|) dx ≤ r

for some 0 < r < 1. Then ‖u‖ < 1.

Proof. Arguing as in [4], by the definition,

‖u‖ = inf

{
k > 0;

∫
Ω

Φ

(
|∇u(x)|

k

)
dx ≤ 1

}
for every u ∈W 1,Φ

0 (Ω). Then (2.4) implies ‖u‖ ≤ 1.
We first observe that

(2.5) Φ(t) ≥ τϕ
0

Φ

(
t

τ

)
∀t > 0 and τ ∈ (0, 1).

Arguing by contradiction, assume that there exists u ∈W 1,Φ
0 (Ω) with ‖u‖ = 1,

and such that (2.4) holds. Let us take ξ ∈ (0, 1). Using relation (2.5) we have

(2.6)

∫
Ω

Φ(|∇u(x)|)dx ≥ ξϕ
0

∫
Ω

Φ(|∇v(x)|) dx,

where v(x) := u(x)
ξ for all x ∈ Ω. We have ‖v‖ = 1

ξ > 1. By Proposition 2.1,

we deduce that

(2.7)

∫
Ω

Φ(|∇v(x)|) dx ≥ ‖v‖ϕ0 > 1.

Relation (2.6) and (2.7) show that∫
Ω

Φ(|∇u(x)|) dx ≥ ξϕ
0

.

Letting ξ ↗ 1 in the above inequality we obtain∫
Ω

Φ(|∇u(x)|) dx ≥ 1,

that contradicts condition (2.4). �

Lemma 2.2 ([5, Remark 2.1]). Let u ∈W 1,Φ
0 (Ω) be such that ‖u‖ = 1. Then∫

Ω

Φ(|∇u|) dx = 1.
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It follows from condition (2.2) and [11, Lemma D.2], that the Orlicz-Sobolev

space W 1,Φ
0 (Ω) is continuously embedded in W 1,ϕ0(Ω), and since ϕ0 > N , by

[20, Theorem 3.2.5] one has W 1,ϕ0(Ω) is compactly embedded in C0(Ω̄). Hence

we have the compact embedding W 1,Φ
0 (Ω) ↪→ C0(Ω̄) and there exists a constant

c > 0 such that:

(2.8) ‖u‖∞ ≤ c‖u‖

for all u in W 1,Φ
0 (Ω). In the rest of this section we recall the following mul-

tiple critical points theorem due to G. Bonanno [3] which can be regarded as
supplements of the variational principle of Ricceri [26].

Proposition 2.2. Let X be a reflexive real Banach space, let J, I : X → R be
two Gâteaux differentiable functionals such that J is sequentially weakly lower
semicontinuous, strongly continuous and coercive, and I is sequentially weakly
upper semicontinuous. For every r > infX J , put

ϕ(r) := inf
J(u)<r

supJ(v)<r I(v)− I(u)

r − J(u)
,

γ := lim inf
r→+∞

ϕ(r), and δ := lim inf
r→(infX J)+

ϕ(r).

Then the following properties hold:

(a) for every r > infX J and every λ ∈]0, 1
ϕ(r) [, the restriction of the func-

tional

hλ := J − λI

to J−1(] − ∞, r[) admits a global minimum, which is a critical point
(local minimum) of hλ in X.

(b) if γ < +∞, then for each λ ∈]0, 1
γ [, the following alternative holds

either,
(b1) hλ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of hλ

such that

lim
n→+∞

J(un) = +∞.

(c) if δ < +∞, then for each λ ∈]0, 1
δ [, the following alternative holds

either:
(c1) there is a global minimum of J which is a local minimum of hλ,

or,
(c2) there is a sequence {un} of pairwise distinct critical points (local

minima) of hλ which weakly converges to a global minimum of J ,
with

lim
n→+∞

J(un) = inf
u∈X

J(u).
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3. Multiple solutions

In this section we shall state and prove the existence of a sequence of pairwise
distinct weak solutions for the problem (1.1).

Definition 3.1. A function u ∈ W 1,Φ
0 (Ω) := X is said to be a weak solution

for the problem (1.1) if

M

(∫
Ω

Φ(|∇u(x)|) dx

)∫
Ω

a(|∇u(x)|)∇u(x)∇v(x) dx

− λ
∫

Ω

f(x, u)v(x) dx− µ
∫

Ω

g(x, u)v(x) dx = 0

for all v ∈ X.

Throughout this paper, we use

F (x, t) :=

∫ t

0

f(x, s) ds, (x, s) ∈ Ω̄× R,

and

M̂(t) :=

∫ t

0

M(s) ds, t ≥ 0.

For fixed x0 ∈ Ω, set D > 0 such that B(x0, D) ⊆ Ω, where B(x0, D) denotes
the ball with center at x0 and radius D. Let

(3.1) k :=
2

D
ω(DN − (

D

2
)N ),

where ω = π
N
2

Γ(1+N
2 )

and Γ is the Gamma function which defined by

Γ(t) :=

∫ +∞

0

zt−1e−z dz, ∀t > 0.

Here, our main result is represented as the following theorem.

Theorem 3.1. Assume that there exist a point x0 ∈ Ω and values D, τ > 0
such that B(x0, D) ⊆ Ω,

(3.2) lim
t→0+

Φ(t)

tϕ0 < τ,

and

(3.3) A <
m

cϕ0 B,

where k is as in (3.1) and

A := lim inf
ξ→0+

∫
Ω

sup|t|≤ξ F (x, t) dx

ξϕ0 , B := lim sup
ξ→0+

∫
B(x0,

D
2 )
F (x, ξ) dx

M̂(meas(Ω)τξϕ0kϕ0)
.

Moreover, let F (x, t) ≥ 0 for every (x, t) ∈ Ω × R+. Then for each λ ∈
( 1
B ,

m
cϕ0A

) and for every L1-Carathéodory function g : Ω̄×R→ R that G(x, t) :=
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0
g(x, ξ) dξ for every (x, t) ∈ Ω̄ × R is a non-negative function and satisfies

the condition

(3.4) G0 :=
cϕ

0

m
lim sup
ξ−→0+

∫
Ω

sup|t|≤ξ G(x, t) dx

ξϕ0 < +∞,

and for every µ ≥ 0 with µ < µg,λ := 1
G0

(1− λcϕ
0
A

m ); there exists a sequence of

pairwise distinct weak solutions for the problem (1.1) which strongly converges

to zero in W 1,Φ
0 (Ω), if G0 > 0.

We now introduce the functionals J, I : X → R:

J(u) = M̂

(∫
Ω

Φ(|∇u(x)|) dx

)
,

I(u) =

∫
Ω

[
F (x, u(x)) +

µ

λ
G(x, u(x))

]
dx,

and
hλ(u) = J(u)− λI(u),

where µ and λ are two positive constants and g is a function which satisfies
condition (3.4).

It is well known that I is a Gateaux differentiable functional and sequentially
weakly upper semicontinuous whose Gateaux derivative at the point u ∈ X is
the functional I ′(u) ∈ X∗, give by

I ′(u)(v) =

∫
Ω

(
f(x, u(x)) +

µ

λ
g(x, u(x))

)
v(x) dx

for every v ∈ X.
Moreover, J is a Gateaux differentiable functional whose Gateaux derivative

at the point u ∈ X is the functional J ′(u) ∈ X∗, given by

J ′(u)(v) = M

(∫
Ω

Φ(|∇u(x)|) dx

)∫
Ω

(a(|∇u(x)|)∇u(x)∇v(x)) dx

for every v ∈ X.

Lemma 3.1. J is coercive and sequentially weakly lower semicontinuous.

Proof. Since M(t) ≥ m for all t ≥ 0, we have

J(u) ≥ m
∫

Ω

Φ(|∇u(x)|) dx.

The above inequality and Proposition 2.1, show that for any u ∈ X with
‖u‖ > 1 we have J(u) ≥ m‖u‖ϕ0 which follows lim‖u‖→+∞ J(u) = +∞, i.e., J
is coercive.

Let {un} ⊆ X be a sequence such that un ⇀ u in X. By [23] the map
u 7→

∫
Ω

Φ(|∇u(x)|) dx is weakly lower semicontinuous, i.e.,

(3.5)

∫
Ω

Φ(|∇u(x)|) dx ≤ lim inf
n→∞

∫
Ω

Φ(|∇un(x)|) dx.
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From (3.5) and since M̂ is continuous and monotone, we have

lim inf
n→∞

J(un) = lim inf
n→∞

M̂

(∫
Ω

Φ(|∇un(x)|) dx

)
≥ M̂

(
lim inf
n→∞

∫
Ω

Φ(|∇un(x)|) dx

)
≥ M̂

(∫
Ω

Φ(|∇u(x)|) dx

)
= J(u)

namely, J is sequentially weakly lower semicontinuous. �

Proof of Theorem 3.1. We apply the part (c) of Proposition 2.2, to prove The-
orem 3.1. Fix λ ∈ ( 1

B ,
m

cϕ0A
) and let g be a function which satisfies (3.4), then

one has µg,λ > 0, since λ < m
cϕ0A

. Now fix µ ∈ [0, µg,λ) and put w1 := 1
B

and w2 := m
cϕ0A

· 1
1+µ

λ ·
m

cϕ
0
A
G0

. If G0 = 0 clearly w1 = 1
B , w2 = m

cϕ0A
, and

λ ∈ (w1, w2). If G0 6= 0, we see that λcϕ
0
A

m + µG0 < 1, since µ < µg,λ, there-

fore m
cϕ0A

· 1
1+µ

λ ·
m

cϕ
0
A
G0

> λ, i.e., λ < w2. Note that λ > 1
B , hence one has

λ ∈ (w1, w2).
Clearly, the weak solutions of the problem (1.1) are exactly the solutions of

the equation h′λ(u) = 0.
Now we show that δ < +∞, where δ is defined in Proposition 2.2. Let ξ > 0

and put r = m( ξc )ϕ
0

, from (2.8) one has,

|u(x)| ≤ ‖u‖∞ ≤ c‖u‖, u ∈ X.
taking Proposition 2.1 and Lemma 2.1 into account, we have:

J−1(]−∞, r[) ⊆
{
u ∈ X; ‖u‖ ≤ ξ

c

}
⊆ {u ∈ X; |u(x)| ≤ ξ for all x ∈ Ω}

and it follows that:

sup
u∈J−1(]−∞,r[)

I(u) <

∫
Ω

sup
|t|≤ξ

[
F (x, t) +

µ

λ
G(x, t)

]
dx.

Hence, taking into account that J(0) = I(0) = 0, one has

ϕ(r) = inf
u∈J−1(]−∞,r[)

supv∈J−1(]−∞,r[) I(v)− I(u)

r − J(u)

≤
supv∈J−1(]−∞,r[) I(v)

r

≤
∫

Ω
sup|t|≤ξ[F (x, t) + µ

λG(x, t)] dx

m( ξc )ϕ0

≤
∫

Ω
sup|t|≤ξ F (x, t) dx

m( ξc )ϕ0
+
µ

λ

∫
Ω

sup|t|≤ξ G(x, t) dx

m( ξc )ϕ0
.
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Moreover, it follows from assumption (3.3) that A < +∞, i.e.,

(3.6) lim inf
ξ→0+

∫
Ω

sup|t|≤ξ F (x, t) dx

ξϕ0 < +∞.

Hence, from (3.3), (3.4) and (3.6), one has

δ ≤ lim inf
r→0+

ϕ(r)(3.7)

≤ lim inf
ξ→0+

∫
Ω

sup|t|≤ξ F (x, t) dx

m( ξc )ϕ0

+ lim sup
ξ→0+

µ

λ

∫
Ω

sup|t|≤ξ G(x, t) dx

m( ξc )ϕ0

= lim inf
ξ→0+

∫
Ω

sup|t|≤ξ F (x, t) dx

m( ξc )ϕ0
+
µ

λ
G0 < +∞.

Also, since G is non-negative one has;

lim sup
ξ→0+

∫
Ω

[F (x, ξ) + µ
λG(x, ξ)] dx

M̂(meas(Ω)τξϕ0kϕ0)
≥ lim sup

ξ→0+

∫
Ω
F (x, ξ) dx

M̂(meas(Ω)τξϕ0kϕ0)

≥ lim sup
ξ→0+

∫
B(x0,

D
2 )
F (x, ξ) dx

M̂(meas(Ω)τξϕ0kϕ0)
.(3.8)

Therefore,

λ ∈ (ω1, ω2)

⊆

 1

lim supξ→0+

∫
Ω

[F (x,ξ)+µ
λG(x,ξ)] dx

M̂(meas(Ω)τξϕ0kϕ0 )

,
1

lim infξ→0+

∫
Ω

sup|t|≤ξ[F (x,t)+µ
λG(x,t)] dx

m( ξc )ϕ0


⊆ (0,

1

δ
).

Now we can apply Proposition 2.2 part (c) for fixed λ, and show that 0, that is
the unique global minimum of J , is not a local minimum of the functional hλ.
Let {dn} be a real sequence of positive numbers such that dn → 0 ad n → ∞
and

(3.9) B = lim
n→∞

∫
B(x0,

D
2 )
F (x, dn) dx

M̂(meas(Ω)τdϕ
0

n kϕ0)
.

Let {vn} ⊆ X be a sequence defined by

vn(x) :=


0 x ∈ Ω \B(x0, D),

dn x ∈ B(x0,
D
2 ),

2dn
D (D − |x− x0|) x ∈ B(x0, D) \B(x0,

D
2 ).
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Then we have,

J(vn) = M̂

(∫
Ω

Φ(|∇vn|) dx

)
= M̂

(∫
B(x0,D)\B(x0,

D
2 )

Φ(
2

D
ω(DN − (

D

2
)N )dn) dx

)

= M̂

(∫
B(x0,D)\B(x0,

D
2 )

Φ(kdn) dx

)
.(3.10)

Moreover from (3.2) and since limn→∞ kdn = 0, there exist η > 0 and n0 ∈ N
such that kdn ∈ (0, η) and

Φ(kdn) < τkϕ
0

dn
ϕ0

, ∀n ≥ n0.

Knowing that M̂ is monotone (increasing) and G is nonnegative; we have

(3.11) J(vn) = M̂

(∫
B(x0,D)\B(x0,

D
2 )

Φ(kdn) dx

)
≤ M̂

(
meas(Ω)τdϕ

0

n kϕ
0
)

and,

(3.12) I(vn) ≥
∫
B(x0,

D
2 )

F (x, dn) dx.

If B < +∞, let ε ∈ ( 1
λB , 1) and ε′ := (1 − ε)B > 0. According to (3.9), there

exists nε such that ∫
B(x0,

D
2 )
F (x, dn) dx

M̂(meas(Ω)τdϕ
0

n kϕ0)
−B > (ε− 1)B,

and then,

(3.13)

∫
B(x0,

D
2 )

F (x, dn) dx > εBM̂
(

meas(Ω)τdϕ
0

n kϕ
0
)

for all n ≥ nε. Hence, from (3.10)-(3.13) we have;

hλ(vn) = J(vn)− λI(vn) ≤ M̂(meas(Ω)τdϕ
0

n kϕ
0

)− λεBM̂
(

meas(Ω)τdϕ
0

n kϕ
0
)

= (1− λεB)M̂
(

meas(Ω)τdϕ
0

n kϕ
0
)
< 0

for every n ≥ max{n0, nε}. On the other hand if B = +∞ let σ > 1
λ , from

(3.9) there exists nσ such that,∫
B(x0,

D
2 )

F (x, dn) dx > σM̂
(

meas(Ω)τdϕ
0

n kϕ
0
)
, ∀n ≥ nσ
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and,
hλ(vn) = J(vn)− λI(vn)

≤ M̂(meas(Ω)τdϕ
0

n kϕ
0

)− λσM̂
(

meas(Ω)τdϕ
0

n kϕ
0
)

= (1− λσ)M̂
(

meas(Ω)τdϕ
0

n kϕ
0
)
< 0

for every n ≥ max{n0, nσ}. Hence hλ(vn) < 0 for every n large enough. It
shows that 0, is not a local minimum of hλ, since hλ(0) = J(0) − λI(0) = 0.
Then owing to the fact that 0 is the unique global minimum of J , so there
exists a sequence {un} ⊂ X of pairwise distinct critical points of hλ such that
limn→∞ ‖un‖ = 0. �

Remark 3.1. As a special case by putting M ≡ 1, µ = 0 and f(x, u) =
h(x)f∗(u) in (1.1) the problem is converted to{

−div(a(|∇u|)∇u) = λh(x)f∗(u) in Ω,

u = 0 on ∂Ω,

which is studied in [5] and the existence of infinitely many solutions for it is
proved.

By an idea in [18], we present the following example which satisfies the
assumptions in Theorem 3.1.

Example 3.1. For N = 3, let M(t) = 1 + 2t for every t ≥ 0, Ω ⊂ RN be a
bounded domain with meas(Ω) = 1. We consider the following functions which
satisfy our results.

f(t) :=

{
t4(5− 5 sin(ln |t|)− cos(ln |t|)) t 6= 0,

0 t = 0,

ϕ(t) :=


|t|3t

log(1 + |t|)
t 6= 0,

0 t = 0,

and

g(t) = t5e−t(6− t)
for every t ∈ R.
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