KYUNGPOOK Math. J. 60(2020), 519-534
https://doi.org/10.5666/KMJ.2020.60.3.519
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Generalized Integration Operator between the Bloch-type Space and Weighted Dirichlet-type Spaces

Fariba Alighadr Ardebili
Department of Mathematics, Sarab Branch, Islamic Azad University, Sarab, Iran e-mail: faribaalighadr@gmail.com
Hamid Vaezi*
Department of Mathematics, Sarab Branch, Islamic Azad University, Sarab, Iran and Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
e-mail: hvaezi@tabrizu.ac.ir
Mostafa Hassanlou
Technical Faculty of Khoy, Urmia University, Urmia, Iran
e-mail: M.hassanlou@urmia.ac.ir

Abstract. Let $H(\mathbb{D})$ be the space of all holomorphic functions on the open unit disc \mathbb{D} in the complex plane \mathbb{C}. In this paper, we investigate the boundedness and compactness of the generalized integration operator

$$
I_{g, \varphi}^{(n)}(f)(z)=\int_{0}^{z} f^{(n)}(\varphi(\xi)) g(\xi) d \xi, \quad z \in \mathbb{D}
$$

between Bloch-type and weighted Dirichlet-type spaces, where φ is a holomorphic self-map of $\mathbb{D}, n \in \mathbb{N}$ and $g \in H(\mathbb{D})$.

1. Introduction

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C} and $H(\mathbb{D})$ be the space of all holomorphic functions on \mathbb{D}. For $\alpha \in(0, \infty)$, the α-Bloch space \mathcal{B}^{α} is the space of all $f \in H(\mathbb{D})$ satisfying

$$
\|f\|_{\mathcal{B}^{\alpha}}=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|f^{\prime}(z)\right|<\infty .
$$

These are collectively referred to as Bloch-type spaces. The little Bloch-type space

* Corresponding Author.

Received September 29, 2019; accepted March 20, 2020.
2020 Mathematics Subject Classification: 47G10, 30H30, 30H99.
Key words and phrases: generalized integration operator, Bloch-type space, Dirichlet-type space.
\mathcal{B}_{0}^{α} consists of those functions $f \in \mathcal{B}^{\alpha}$ for which

$$
\lim _{|z| \longrightarrow 1}\left(1-|z|^{2}\right)^{\alpha}\left|f^{\prime}(z)\right|=0 .
$$

The space \mathcal{B}^{α} is a Banach space with the norm

$$
\|f\|=|f(0)|+\|f\|_{\mathcal{B}^{\alpha}},
$$

and \mathcal{B}_{0}^{α} is a closed subspace of \mathcal{B}^{α}.
For $p \in(0, \infty)$ and $\beta>-1, \mathcal{A}_{\beta}^{p}$ denotes the space of all $f \in H(\mathbb{D})$ for which

$$
\|f\|_{\mathcal{A}_{\beta}^{p}}^{p}=\int_{\mathbb{D}}|f(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\infty,
$$

where $d A$ denotes the normalized Lebesgue area measure on \mathbb{D}. The space \mathcal{A}_{β}^{p} is called the weighted Bergman space. The weighted Bergman space \mathcal{A}_{β}^{p} is a Banach space for $p \geq 1$ and a Hilbert space for $p=2$. It is well-known that $f \in \mathcal{A}_{\beta}^{p}$ if and only if

$$
\int_{\mathbb{D}}|f(z)|^{p}\left(1-|z|^{2}\right)^{\beta} d A(z)<\infty .
$$

For $p \in(0, \infty)$ and $\beta>-1$, the weighted Dirichlet-type space \mathcal{D}_{β}^{p} is the space of all functions $f \in H(\mathbb{D})$ for which

$$
\|f\|_{\mathcal{D}_{\beta}^{p}}^{p}=\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\infty .
$$

We note that $f \in \mathcal{D}_{\beta}^{p}$ if and only if $f^{\prime} \in \mathcal{A}_{\beta}^{p}$.
Let u be a holomorphic function on \mathbb{D} and φ a nonconstant holomorphic selfmap of \mathbb{D}. The weighted composition operator $u C_{\varphi}$ induced by u and φ is defined on $H(\mathbb{D})$ as follows:

$$
u C_{\varphi}(f)=u f o \varphi .
$$

Putting $u=1, u C_{\varphi}$ reduces to the composition operator C_{φ}. For general background on composition operators, we refer to $[3,14]$ and for weighted composition operators acting on Bloch-type spaces and Dirichlet-type spaces we refer for example to $[2,5$, $13,18]$.
In this paper, we consider an integration operator $I_{g, \varphi}^{(n)}$ which is defined on $H(\mathbb{D})$ by

$$
I_{g, \varphi}^{(n)}(f)(z)=\int_{0}^{z} f^{(n)}(\varphi(\xi)) g(\xi) d \xi, \quad z \in \mathbb{D},
$$

where φ is a holomorphic self-map of $\mathbb{D}, n \in \mathbb{N}$ and $g \in H(\mathbb{D})$.
This operator, which was introduced in [15], is called the generalized integration operator. It is a generalization of the Riemann-Stieltjes operator I_{g} induced by g, defined by

$$
I_{g} f(z)=\int_{0}^{z} f(\zeta) g^{\prime}(\zeta) d \zeta, \quad z \in D
$$

Y. Yu and Y. Liu in [20] characterized the boundedness and compactness of Riemann-Stieltjes operator I_{g} from weighted Bloch spaces into Bergman-type spaces. The essential norm of the integral operator I_{g} on some spaces of holomorphic functions was studied by L. Liu, Z. Lou and C. Xiong in [10].

The operator $I_{g, \varphi}^{(n)}$ induces some known operators. For example, when $n=1$, $I_{g, \varphi}^{(n)}$ reduces to an integration operator recently studied by S. Li and S. Stevic in $[6,7,8]$. Taking $n=1$ and $g(z)=\varphi^{\prime}(z)$, we obtain the composition operator C_{φ} defined by $C_{\varphi} f=f(\varphi)-f(\varphi(0)), f \in H(D)$.

Recently, S. D. Sharma and A. Sharma in [15] characterized the boundedness and compactness of generalized integration operator $I_{g, \varphi}^{(n)}$ from Bloch-type spaces to weighted BMOA.

The boundedness and compactness of Riemann-Stieltjes operators from mixed norm spaces to Zygmund-type spaces on the unit ball was studied by Y. Liu and Y . Yu in [11]. X. Zhu in [24] investigated the boundedness and compactness of generalized integration operators from H^{∞} to Zygmund-type spaces. Z. He and G. Cao in [4] investigated the boundedness and compactness of generalized integration operators between Bloch-type spaces and $F(p, q, s)$ spaces. For related integral-type operators on unit disc and also in \mathbb{C}^{n}, see for example $[1,9,16]$. Motivated by the above results, in this article we give an equivalent conditions for the boundedness and compactness of the generalized integration operator $I_{g, \varphi}^{(n)}$ between the Blochtype and weighted Dirichlet-type spaces.

The notation $a \preceq b$ means that there exists a positive constant C such that $a \leq C b$. If both $a \preceq \bar{b}$ and $b \preceq a$ occur, then $a \sim b$.

2. Boundednes and Compactness of the Operator $I_{g, \varphi}^{(n)}: \mathcal{B}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$

In this section we characterize the boundedness and compactness of the generalized integration operator $I_{g, \varphi}^{(n)}$ from the Bloch-type space \mathcal{B}^{α} into Dirichlet-type space \mathcal{D}_{β}^{p}.

Let $\alpha>0$. From [12] it follows that there are two holomorphic functions $f_{1}, f_{2} \in \mathcal{B}^{\alpha}$ such that

$$
\frac{C}{\left(1-|z|^{2}\right)^{\alpha}} \leq\left|f_{1}^{\prime}(z)\right|+\left|f_{2}^{\prime}(z)\right|, \quad z \in \mathbb{D},
$$

where C ia a positive constant.
If we define $h_{1}(z)=f_{1}(z)-z f_{1}^{\prime}(0)$ and $h_{2}(z)=f_{2}(z)-z f_{2}^{\prime}(0)$, using the following relation from [22],

$$
\left(1-|z|^{2}\right)^{\alpha+1}\left|f^{\prime \prime}(z)\right|+\left|f^{\prime}(0)\right| \sim\left(1-|z|^{2}\right)^{\alpha+1}\left|f^{\prime}(z)\right|,
$$

it can be shown that $h_{1}, h_{2} \in \mathcal{B}^{\alpha}$ and

$$
\frac{C}{\left(1-|z|^{2}\right)^{\alpha+1}} \leq\left|h_{1}^{\prime \prime}(z)\right|+\left|h_{2}^{\prime \prime}(z)\right|, \quad z \in \mathbb{D} .
$$

By repeating the above method, we have the following:
Lemma 2.1. $([4,23])$ Let $\alpha>0$ and $n \in \mathbb{N}$. There exist two holomorphic functions $h_{1}, h_{2} \in \mathcal{B}^{\alpha}$ such that

$$
\frac{C}{\left(1-|z|^{2}\right)^{\alpha+n-1}} \leq\left|h_{1}^{(n)}(z)\right|+\left|h_{2}^{(n)}(z)\right|, \quad z \in \mathbb{D}
$$

where C is a positive constant.
For achieving the boundedness of $I_{g, \varphi}^{(n)}: \mathcal{B}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ we need to the following result from [23]:

Lemma 2.2. Let $\alpha>0$ and $n \in \mathbb{N}$. If $f \in \mathcal{B}^{\alpha}$, then

$$
|f(z)| \leq C \begin{cases}\|f\|_{\mathcal{B}^{\alpha}} & 0<\alpha<1 \\ \|f\|_{\mathcal{B}^{\alpha}} \ln \frac{2}{1-|z|^{2}} & \alpha=1 \\ \frac{\|f\|_{\mathcal{B}} \alpha}{\left(1-|z|^{2}\right)^{\alpha-1}} & \alpha>1\end{cases}
$$

and

$$
\left|f^{(n)}(z)\right| \leq \frac{C\|f\|_{\mathcal{B}^{\alpha}}}{\left(1-|z|^{2}\right)^{\alpha+n-1}}
$$

where C is a positive constant.
Theorem 2.3. Let $g \in H(\mathbb{D})$, $n \in \mathbb{N}$, φ be a holomorphic self-map of $\mathbb{D}, 0<\alpha, p<$ ∞ and $\beta>-1$. Then the following statements are equivalent:
(i) $I_{g, \varphi}^{(n)}: \mathcal{B}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ is bounded.
(ii) $I_{g, \varphi}^{(n)}: \mathcal{B}_{0}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ is bounded.
(iii)

$$
M=\int_{\mathbb{D}} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{p(\alpha+n-1)}}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\infty .
$$

Proof. (i) \Longrightarrow (ii) is trivial, since $\mathcal{B}_{0}^{\alpha} \subset \mathcal{B}^{\alpha}$.
(ii) \Longrightarrow (iii). First, note that if $h \in \mathcal{B}^{\alpha}$, then by defining h_{s} as $h_{s}(z)=h(s z)$ for every $z \in \mathbb{D}$ and $s \in(0,1), h_{s} \in \mathcal{B}_{0}^{\alpha}$ and $\left\|h_{s}\right\|_{\mathcal{B}_{0}^{\alpha}} \leq\|h\|_{\mathcal{B} \alpha}$. By Lemma 2.1, there are two holomorphic functions $h_{1}, h_{2} \in \mathcal{B}^{\alpha}$ such that the following inequality holds:

$$
\begin{equation*}
\frac{C}{\left(1-|z|^{2}\right)^{\alpha+n-1}} \leq\left|h_{1}^{(n)}(z)\right|+\left|h_{2}^{(n)}(z)\right|, \quad z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

So, by (2.1),

$$
\begin{aligned}
& \int_{\mathbb{D}} \frac{|s g(z)|^{p}}{\left(1-|s \varphi(z)|^{2}\right)^{p(\alpha+n-1)}}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \leq C \int_{\mathbb{D}}\left|h_{1 s}^{(n)}(\varphi(z))\right|^{p}|s g(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \quad+C \int_{\mathbb{D}}\left|h_{1 s}^{(n)}(\varphi(z))\right|^{p}|s g(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \leq C\left(\left\|I_{g, \varphi}^{(n)}\left(h_{1 s}\right)\right\|_{D_{\beta}^{p}}^{p}+\left\|I_{g, \varphi}^{(n)}\left(h_{2 s}\right)\right\|_{\mathcal{D}_{\beta}^{p}}^{p}\right),
\end{aligned}
$$

for every $s \in(0,1)$. Since boundedness of $I_{g, \varphi}^{(n)}: \mathcal{B}_{0}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ implies that $\left\|I_{g, \varphi}^{(n)}\left(h_{1 s}\right)\right\|_{\mathcal{D}_{\beta}^{p}}^{p}<\infty$ and $\left\|I_{g, \varphi}^{(n)}\left(h_{2 s}\right)\right\|_{\mathcal{D}_{\beta}^{p}}^{p}<\infty$, so, by an application of Fatou's Lemma,

$$
M=\int_{\mathbb{D}} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{p(\alpha+n-1)}}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\infty
$$

(iii) \Longrightarrow (i). From Lemma 2.2 we have

$$
\begin{equation*}
\left|f^{(n)}(z)\right| \leq C \frac{\|f\|_{\mathcal{B}^{\alpha}}}{\left(1-|z|^{2}\right)^{\alpha+n-1}} \tag{2.2}
\end{equation*}
$$

for every $f \in \mathcal{B}^{\alpha}$. This implies that

$$
\begin{aligned}
\left\|I_{g, \varphi}^{(n)} f\right\|_{\mathcal{D}_{\beta}^{p}}^{p} & =\int_{\mathbb{D}}\left|f^{(n)}(\varphi(z))\right|^{p}|g(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \leq C\|f\|_{\mathcal{B}^{\alpha}}^{p} \int_{\mathbb{D}} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{p(\alpha+n-1)}}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& =C M\|f\|_{\mathcal{B}^{\alpha}}^{p}<\infty .
\end{aligned}
$$

Therefore, $I_{g, \varphi}^{(n)}: \mathcal{B}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ is bounded.
Now, we investigate the compactness of $I_{g, \varphi}^{(n)}: \mathcal{B}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$. For this investigation we need to the following Lemma which can be found for example in [17].

Lemma 2.4. Let X and Y be Banach spaces of holomorphic functions on \mathbb{D}. Suppose that
(i) The point evaluation functions on X are continuous.
(ii) The closed unit ball of X is a compact subset of X in the topology of uniform convergence on compact sets.
(iii) $T: X \longrightarrow Y$ is continuous when X and Y are given the topology of uniform convergence on compact sets.

Then, T is a compact operator if and only if given a bounded sequence $\left\{f_{n}\right\}$ in X such that $f_{n} \longrightarrow 0$ uniformly on compact sets, then the sequence $\left\{T f_{n}\right\}$ converges to zero in the norm of Y.

For $X=\mathcal{B}^{\alpha}$ and $Y=\mathcal{D}_{\beta}^{p}$, the above Lemma can be applied. So it follows that:
Lemma 2.5. Let $T: \mathcal{B}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ be a bounded operator. Then, T is compact if and only if given a bounded sequence $\left\{f_{n}\right\}$ in \mathcal{B}^{α} such that $f_{n} \longrightarrow 0$ uniformly on compact sets, then the sequence $\left\{T f_{n}\right\}$ converges to zero in the norm of \mathcal{D}_{β}^{p}.

By the following result we characterize the compactness of $I_{g, \varphi}^{(n)}: \mathcal{B}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$.
Theorem 2.6. Let $g \in H(\mathbb{D})$, $n \in \mathbb{N}$, φ be a holomorphic self-map of $\mathbb{D}, 0<\alpha, p<$ ∞ and $\beta>-1$. Then the following statements are equivalent:
(i) $I_{g, \varphi}^{(n)}: \mathcal{B}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ is compact.
(ii) $I_{g, \varphi}^{(n)}: \mathcal{B}_{0}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ is compact.
(iii) $I_{g, \varphi}^{(n)}: \mathcal{B}_{0}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ is weakly compact.
(iv)

$$
\begin{equation*}
M=\int_{\mathbb{D}} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{p(\alpha+n-1)}}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\infty \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \longrightarrow 1} \int_{|\varphi(z)|>t} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{p(\alpha+n-1)}}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)=0 \tag{2.4}
\end{equation*}
$$

Proof. (i) \Longrightarrow (ii) is trivial.
(ii) \Longleftrightarrow (iii). Clearly, $I_{g, \varphi}^{(n)}: \mathcal{B}_{0}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ is weakly compact if and only if its adjoint, i.e. $\left(I_{g, \varphi}^{(n)}\right)^{*}:\left(\mathcal{D}_{\beta}^{p}\right)^{*} \longrightarrow\left(\mathcal{B}_{0}^{\alpha}\right)^{*}$ is weakly compact. According to [21], $\left(\mathcal{B}_{0}^{\alpha}\right)^{*}=\mathcal{A}_{\beta}^{1}$. Since \mathcal{A}_{β}^{1} satisfies in the Schur property, $\left(I_{g, \varphi}^{(n)}\right)^{*}:\left(\mathcal{D}_{\beta}^{p}\right)^{*} \longrightarrow\left(\mathcal{B}_{0}^{\alpha}\right)^{*}$ is compact. Thus $I_{g, \varphi}^{(n)}: \mathcal{B}_{0}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ is compact.
(iii) \Longrightarrow (iv). Assume that $I_{g, \varphi}^{(n)}: \mathcal{B}_{0}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ is (weakly) compact. Then Theorem 2.3 implies that (2.3) holds. Let $f_{k}(z)=\frac{z^{k}}{k^{1-\alpha}}$ for $k \in \mathbb{N}$ and $z \in \mathbb{D}$. Then $\left\{f_{k}\right\} \subset \mathcal{B}_{0}^{\alpha}$ is a norm bounded sequence and $f_{k} \longrightarrow 0$ as $k \longrightarrow \infty$ for every $k \in \mathbb{N}$ on any compact subset of \mathbb{D}. Thus, by Lemma 2.5 , we have

$$
\begin{equation*}
\lim _{k \longrightarrow \infty}\left\|I_{g, \varphi}^{(n)} f_{k}\right\|_{\mathcal{D}_{\beta}^{p}}=0 . \tag{2.5}
\end{equation*}
$$

Hence, for every $\varepsilon>0$ there is an N such that for every $k \geq N$,

$$
\begin{equation*}
\lim \left(\frac{k^{\alpha}(k-1)!}{(k-n)!}\right)^{p} \int_{\mathbb{D}}|\varphi(z)|^{p(k-n)}|g(z)|^{p} \log \left(\frac{1}{|z|}\right)^{\beta} d A(z)<\varepsilon \tag{2.6}
\end{equation*}
$$

Thus, for each $r \in(0,1)$,

$$
\begin{equation*}
\left(\frac{N^{\alpha}(N-1)!}{(N-n)!}\right)^{p} r^{p(N-n)} \int_{|\varphi(z)|>r}|g(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\varepsilon \tag{2.7}
\end{equation*}
$$

If we choose $r \geq\left(\frac{(N-n)!}{(N-1)!}\right)^{\frac{1}{(N-n)}} N^{-\frac{\alpha}{N-n}}$, then we have

$$
\begin{equation*}
\int_{|\varphi(z)|>r}|g(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\varepsilon \tag{2.8}
\end{equation*}
$$

Let $f \in \mathbb{B}_{\mathcal{B}_{0}^{\alpha}}$, where $\mathbb{B}_{\mathcal{B}_{0}^{\alpha}}$ is the unit ball of \mathcal{B}_{0}^{α}. The compactness of $I_{g, \varphi}^{(n)}$: $\mathcal{B}_{0}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ implies that for every $\varepsilon>0$, there exists $r \in(0,1)$ such that

$$
\begin{equation*}
\int_{\mathbb{D}}\left|\left(I_{g, \varphi}^{(n)}\left(f-f_{t}\right)\right)^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\varepsilon \tag{2.9}
\end{equation*}
$$

where $f_{t}(z)=f(t z), z \in \mathbb{D}$.
So, (2.8) and (2.9) imply that

$$
\begin{aligned}
& \int_{|\varphi(z)|>r}\left|\left(I_{g, \varphi}^{(n)} f\right)^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \leq C \int_{|\varphi(z)|>r}\left|\left(I_{g, \varphi}^{(n)}\left(f-f_{t}\right)\right)^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
&+C \int_{|\varphi(z)|>r}\left|\left(I_{g, \varphi}^{(n)}\left(f_{t}\right)\right)^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \leq C \int_{|\varphi(z)|>r}\left|\left(I_{g, \varphi}^{(n)}\left(f-f_{t}\right)\right)^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \quad+C \int_{|\varphi(z)|>r}\left|f_{t}^{(n)}(\varphi(z))\right|^{p}|g(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \leq C \varepsilon+C \varepsilon \sup _{z \in \mathbb{D}}\left|f_{t}^{(n)}(z)\right|^{p} \\
&= C \varepsilon\left(1+\sup _{z \in \mathbb{D}}\left|f_{t}^{(n)}(z)\right|^{p}\right),
\end{aligned}
$$

where C is a positive constant. Thus, for every $f \in \mathbb{B}_{\mathcal{B}_{0}^{\alpha}}$ and every $\varepsilon>0$, there is a $\delta=\delta(f, \varepsilon)$ (depended on f and ε) such that for every $r \in[\delta, 1)$ we have

$$
\begin{equation*}
\int_{|\varphi(z)|>r}\left|\left(I_{g, \varphi}^{(n)} f\right)^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\varepsilon \tag{2.10}
\end{equation*}
$$

The compactness of $I_{g, \varphi}^{(n)}: \mathcal{B}_{0}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ leads that $I_{g, \varphi}^{(n)}\left(\mathbb{B}_{\mathcal{B}_{0}^{\alpha}}\right)$ is a relatively compact subset of \mathcal{D}_{β}^{p}. Hence, for every $\varepsilon>0$ there exists a finite family of functions $f_{1}, \ldots, f_{N} \in \mathbb{B}_{\mathcal{B}_{0}^{\alpha}}$ such that for every $f \in \mathbb{B}_{\mathcal{B}_{0}^{\alpha}},\left\|I_{g, \varphi}^{(n)} f-I_{g, \varphi}^{(n)} f_{i}\right\|_{\mathcal{D}_{\beta}^{p}}<\varepsilon$ for $i \in$ $\{1, \ldots, N\}$. i.e.,

$$
\begin{equation*}
\int_{\mathbb{D}}\left|\left(I_{g, \varphi}^{(n)}\left(f-f_{i}\right)\right)^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\varepsilon \tag{2.11}
\end{equation*}
$$

Hence, putting $\delta=\max _{1 \leq i \leq N} \delta\left(f_{i}, \varepsilon\right)$, for any $f \in \mathbb{B}_{\mathcal{B}_{0}^{\alpha}}$ we have

$$
\begin{equation*}
\int_{|\varphi(z)|>r}\left|\left(I_{g, \varphi}^{(n)} f_{i}\right)^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<C \varepsilon \tag{2.12}
\end{equation*}
$$

if $r \in[\delta, 1)$.
Applying (2.12) to functions $\left(f_{i}\right)_{s}(z)=f_{i}(s z)$ for $i=1,2$ (the functions are as in Lemma 2.1), we obtain

$$
\begin{aligned}
& \int_{|\varphi(z)|>r} \frac{|s g(z)|^{p}}{\left(1-|s \varphi(z)|^{2}\right)^{p(\alpha+n-1)}}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \leq \\
& \quad C \int_{|\varphi(z)|>r}\left|f_{1}^{(n)}(s \varphi(z))\right|^{p}|s g(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \quad+C \int_{|\varphi(z)|>r}\left|f_{2}^{(n)}(s \varphi(z))\right|^{p}|s g(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \leq \quad \frac{C}{\left\|f_{1 s}\right\|_{\mathcal{B}_{o}^{\alpha}}^{p}} \int_{|\varphi(z)|>r}\left|\left(I_{g, \varphi}^{(n)} f_{1 s}\right)^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& \quad+\frac{C}{\left\|f_{2 s}\right\|_{\mathcal{B}_{o}^{\alpha}}^{p}} \int_{|\varphi(z)|>r}\left|\left(I_{g, \varphi}^{(n)} f_{2 s}\right)^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& <
\end{aligned}
$$

for all $r \in[\delta, 1)$. By Fatou's Lemma, this estimate implies (2.4).
(iv) \Longrightarrow (i). Let $\left\{f_{k}\right\}$ be a bounded sequence in \mathcal{B}^{α} converges to zero on compact subsets of \mathbb{D} as $k \longrightarrow \infty$. Cauchy's estimate implies that for any $n \in \mathbb{N},\left\{f_{k}^{(n)}\right\}$ also converges to zero on compact subset of \mathbb{D} as $k \longrightarrow \infty$. In particular

$$
\begin{equation*}
\lim _{k \longrightarrow \infty} \sup _{|w| \leq r}\left|f_{k}^{(n)}(w)\right|=0 \tag{2.13}
\end{equation*}
$$

By hypothesis, for every $\varepsilon>0$ there is $r \in(0,1)$ such that,

$$
\begin{equation*}
\int_{|\varphi(z)|>r} \frac{|g(z)|^{p}}{\left(1-|\varphi(z)|^{2}\right)^{p(\alpha+n-1)}}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\varepsilon . \tag{2.14}
\end{equation*}
$$

Taking the function $f(z)=z^{n}$, boundedness of $I_{g, \varphi}^{(n)}$ implies that

$$
\begin{equation*}
L=\int_{\mathbb{D}}|g(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z)<\infty \tag{2.15}
\end{equation*}
$$

So, using Lemma 2.2 and relations (2.14) and (2.15),

$$
\begin{aligned}
\left\|I_{g, \varphi}^{(n)} f_{k}\right\|_{\mathcal{D}_{\beta}^{p}}^{p}= & \int_{\mathbb{D}}\left|\left(I_{g, \varphi}^{(n)} f_{k}\right)^{\prime}(z)\right|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
= & \int_{|\varphi(z)| \leq r}\left|f_{k}^{(n)}(\varphi(z))\right|^{p}|g(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
& +\int_{r<|\varphi(z)|<1}\left|f_{k}^{(n)}(\varphi(z))\right|^{p}|g(z)|^{p}\left(\log \frac{1}{|z|}\right)^{\beta} d A(z) \\
\leq & L \sup _{|\varphi(z)| \leq r}\left|f_{k}^{(n)}(\varphi(z))\right|^{p}+C \varepsilon\left\|f_{k}\right\|_{\mathcal{B}^{\alpha}}^{p}
\end{aligned}
$$

Letting $k \longrightarrow \infty$ and using (2.13), we conclude that $\left\|I_{g, \varphi}^{(n)} f_{k}\right\|_{\mathcal{D}_{\beta}^{p}} \longrightarrow 0$. Thus, by Lemma 2.5, $I_{g, \varphi}^{(n)}: \mathcal{B}^{\alpha} \longrightarrow \mathcal{D}_{\beta}^{p}$ is compact.

3. Boundednes and Compactness of the Operator $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$

In this section we study the boundedness and compactness of the generalized integration operator $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$.

For every $a \in \mathbb{D}$ the holomorphic mapping from \mathbb{D} onto \mathbb{D} is defined by $\sigma_{a}(z)=$ $\frac{a-z}{1-\bar{a} z}$.
Lemma 3.1.([19]) Let $\beta>-1,0<p<\infty$ and $f \in \mathcal{A}_{\beta}^{p}$. Then

$$
|f(z)|\left(1-|z|^{2}\right)^{\frac{2+\beta}{p}} \leq\left((1+\beta) \int_{\mathbb{D}}|f(z)|^{p}\left(1-|z|^{2}\right)^{\beta} d A(z)\right)^{\frac{1}{p}} \quad z \in \mathbb{D}
$$

with equality if and only if f is a constant multiple of the function $f_{a}(z)=$ $\left(-\sigma_{a}^{\prime}(z)\right)^{\frac{2+\beta}{p}}$.

We recall the following fundamental lemma from [21]:
Lemma 3.2.([21, Lemma 4.2.2]) Suppose $z \in \mathbb{D}$, c is real, $t>-1$ and

$$
I_{c, t}(z)=\int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{t}}{|1-z \bar{w}|^{2+t+c}} d A(w)
$$

(a) If $c<0$, then as a function of $z, I_{c, t}(z)$ is bounded on \mathbb{D}.
(b) If $c>0$, then

$$
I_{c, t}(z) \sim \frac{1}{\left(1-|z|^{2}\right)^{c}}, \quad|z| \longrightarrow 1^{-} .
$$

(c) If $c=0$, then

$$
I_{0, t}(z) \sim \log \frac{1}{1-|z|^{2}}, \quad|z| \longrightarrow 1^{-}
$$

Let $0<p<\infty, \beta>-1$ and $f \in \mathcal{A}_{\beta}^{p}$. Then

$$
\begin{equation*}
|f(z)| \leq \frac{\|f\|_{\mathcal{A}_{\beta}^{p}}}{\left(1-|z|^{2}\right)^{\frac{2+\beta}{p}}}, \tag{3.1}
\end{equation*}
$$

for $z \in \mathbb{D}([21])$. Also, for $f \in \mathcal{A}_{\beta}^{p}$ and $z \in \mathbb{D}$, we have

$$
\begin{equation*}
f(z)=(\beta+1) \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{\beta} f(w)}{(1-z \bar{w})^{2+\beta}} d A(w), \tag{3.2}
\end{equation*}
$$

See 4.2 .1 of [21]. Differentiating under the integral $\operatorname{sign} n$ times, we obtain a constant $K_{n}>0$ such that

$$
\begin{equation*}
f^{(n)}(z)=K_{n} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{\beta}}{(1-z \bar{w})^{n+2+\beta}} \bar{w}^{n} f(w) d A(w) . \tag{3.3}
\end{equation*}
$$

Lemma 3.3. Let $0<p<\infty, \beta>-1, m \in \mathbb{N}$ and $f \in \mathcal{A}_{\beta}^{p}$. Then there exists a constant $C>0$ such that

$$
\begin{equation*}
\left|f^{(m)}(z)\right| \leq C \frac{\|f\|_{\mathcal{A}_{\beta}^{p}}}{\left(1-|z|^{2}\right)^{\frac{2+\beta}{p}+m}} . \tag{3.4}
\end{equation*}
$$

Proof. By (3.1), (3.3) and setting $t=\beta-\frac{2+\beta}{p}$ in Lemma 3.2, we have

$$
\begin{aligned}
\left.\mid f^{(m}\right)(z) \mid & \leq K_{m} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{\beta}\left|\bar{w}^{m}\right|}{|1-z \bar{w}|^{2+m+\beta}}|f(w)| d A(w) \\
& \leq K_{m} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{\beta}}{|1-z \bar{w}|^{2+m+\beta}} \cdot \frac{\|f\|_{\mathcal{A}_{\beta}^{p}}^{\left(1-|w|^{2}\right)^{\frac{2+\beta}{p}}} d A(w)}{} \\
& =K_{m}\|f\|_{\mathcal{A}_{\beta}^{p}} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{t}}{|1-z \bar{w}|^{2+t+\left(m+\frac{2+\beta}{p}\right)}} d A(w) \\
& \sim K_{m} \frac{\|f\|_{\mathcal{A}_{\beta}^{p}}}{\left(1-|z|^{2}\right)^{\frac{2+\beta}{p}+m}} .
\end{aligned}
$$

So, there exists a constant C such that

$$
\left|f^{(m)}(z)\right| \leq C \frac{\|f\|_{\mathcal{A}_{\beta}^{p}}}{\left(1-|z|^{2}\right)^{\frac{2+\beta}{p}+m}}
$$

Theorem 3.4. Let $g \in H(\mathbb{D}), n \in \mathbb{N}$ and φ be a holomorphic self-map of \mathbb{D}, $0<\alpha, p<\infty$ and $\beta>-1$. Then the following statements are equivalent:
(i) $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$ is bounded.
(ii)

$$
\begin{equation*}
M=\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n-1}}<\infty . \tag{3.5}
\end{equation*}
$$

Proof. (ii) \Longrightarrow (i). Let $f \in \mathcal{D}_{\beta}^{p}$. Then $f^{\prime} \in \mathcal{A}_{\beta}^{p}$ and from Lemma 3.3, there is a constant $C>0$ such that

$$
\begin{equation*}
\left|f^{(n)}(z)\right|=\left|\left(f^{\prime}(z)\right)^{(n-1)}\right| \leq C \frac{\left\|f^{\prime}\right\|_{\mathcal{A}_{\beta}^{p}}}{\left(1-|z|^{2}\right)^{\frac{2+\beta}{p}+n-1}} \leq C \frac{\|f\|_{\mathcal{D}_{\beta}^{p}}}{\left(1-|z|^{2}\right)^{\frac{2+\beta}{p}+n-1}} \tag{3.6}
\end{equation*}
$$

for $z \in \mathbb{D}$. By (3.6),

$$
\begin{aligned}
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|\left(I_{g, \varphi}^{(n)} f\right)^{\prime}(z)\right| & =\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|f^{(n)}(\varphi(z))\right||g(z)| \\
& \leq C \sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n-1}}\|f\|_{\mathcal{D}_{\beta}^{p}} \\
& \leq C M\|f\|_{\mathcal{D}_{\beta}^{p}}
\end{aligned}
$$

Hence, $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$ is bounded.
(i) \Longrightarrow (ii). Assume that (i) holds. Taking the function $f(z)=\frac{z^{n}}{n!}$, the boundedness of $I_{g, \varphi}^{(n)}$ implies that

$$
\begin{equation*}
L=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}|g(z)|<\infty . \tag{3.7}
\end{equation*}
$$

Define the functions f_{a} for every $a \in \mathbb{D}$ as follows:

$$
f_{a}(z)=\int_{0}^{z}\left(\frac{1-|a|^{2}}{(1-\bar{a} w)^{2}}\right)^{\frac{\beta+2}{p}} d w
$$

Then Lemma 3.1 implies that $f_{a} \in \mathcal{D}_{\beta}^{p}$ and $\left\|f_{a}\right\|_{\mathcal{D}_{\beta}^{p}} \sim 1$. The boundedness of $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$ implies that there exists a constant $C>0$ such that $\left\|I_{g, \varphi}^{(n)} f_{a}\right\|_{\mathcal{B}^{\alpha}} \leq$
$C\left\|f_{a}\right\|_{\mathcal{D}_{\beta}^{p}} \leq C$. Also, it is easy to see that for any $n \in \mathbb{N}$ and $z \in \mathbb{D}$,

$$
\begin{equation*}
f_{a}^{(n+1)}(z)=\frac{c_{n+1} \bar{a}^{n}\left(1-|a|^{2}\right)^{\frac{\beta+2}{p}}}{(1-\bar{a} z)^{\frac{2(\beta+2)}{p}+n}} \tag{3.8}
\end{equation*}
$$

where $c_{n+1}=\Pi_{m=0}^{n-1}\left(\frac{2(\beta+2)}{p}+m\right)$. Since

$$
f_{a}^{\prime}(z)=\frac{\left(1-|a|^{2}\right)^{\frac{\beta+2}{p}}}{(1-\bar{a} z)^{\frac{2(\beta+2)}{p}}}
$$

so, $f_{a}^{\prime}(z)$ follows from (3.8) by letting $n=0$ and $c_{1}=1$.
Since $I_{g, \varphi}^{(n)} f_{a}(0)=0$, letting $a=\varphi(z)$ and using (3.8),

$$
\begin{aligned}
C & \geq\left\|I_{g, \varphi}^{(n)} f_{\varphi(z)}\right\| \geq\left\|I_{g, \varphi}^{(n)} f_{\varphi(z)}\right\|_{\mathcal{B}^{\alpha}} \\
& =\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|f_{\varphi(z)}^{(n)}(\varphi(z))\right||g(z)| \\
& =\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|\frac{c_{n}|\overline{\varphi(z)}|^{n-1}\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}}}{\left(1-|\varphi(z)|^{2}\right)^{\frac{2(\beta+2)}{p}+n-1}}\right||g(z)| \\
& \geq \frac{c_{n}|\varphi(z)|^{n-1}\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n-1}}
\end{aligned}
$$

This shows that

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \frac{|\varphi(z)|^{n-1}\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n-1}}<\infty . \tag{3.9}
\end{equation*}
$$

For any $\delta, 0<\delta<1$, by (3.9),

$$
\sup _{|\varphi(z)|>\delta} \frac{\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n-1}}<\infty .
$$

For $z \in \mathbb{D}$ such that $|\varphi(z)| \leq \delta$, we have

$$
\begin{equation*}
\frac{\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n-1}} \leq \frac{\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-\delta^{2}\right)^{\frac{\beta+2}{p}+n-1}} \tag{3.10}
\end{equation*}
$$

Hence, from (3.7) and (3.10), we have

$$
\sup _{|\varphi(z)| \leq \delta} \frac{\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n-1}}<\infty .
$$

So,

$$
\sup _{z \in \mathcal{D}} \frac{\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n-1}}<\infty .
$$

Thus, (3.5) holds and the proof of the theorem is completed.
Now, we investigate the compactness of $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$. We use the following lemma which can be obtained from 2.4 by taking $X=\mathcal{D}_{\beta}^{p}$ and $Y=\mathcal{B}^{\alpha}$.

Lemma 3.5. Let $T: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$ be a bounded operator. Then, T is compact if and only if given a bounded sequence $\left\{f_{n}\right\}$ in \mathcal{D}_{β}^{p} such that $f_{n} \longrightarrow 0$ uniformly on compact sets, then the sequence $\left\{T f_{n}\right\}$ converges to zero in the norm of \mathcal{B}^{α}.
Theorem 3.6. Let $g \in H(\mathbb{D}), n \in \mathbb{N}, \varphi$ be a holomorphic self-map of $\mathbb{D}, 0<$ $\alpha, p<\infty$ and $\beta>-1$. If $\|\varphi\|_{\infty}<1$ and $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$ is bounded, Then $I_{g, \varphi}^{(n)}$ is compact.
Proof. Since $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$ is bounded, Theorem 3.4 implies that

$$
M=\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n-1}}<\infty .
$$

Let $\left\{f_{k}\right\}$ be a bounded sequence in the unit ball of \mathcal{D}_{β}^{p} that converges to 0 uniformly on compact subsets of \mathbb{D} as $k \longrightarrow \infty$. Then, Cauchy's estimate implies that $\left\{f_{k}^{(n)}\right\}$ for $n \in \mathbb{N}$ also converges uniformly to 0 on compact subset of \mathbb{D} as $k \longrightarrow \infty$. This implies that,

$$
\lim _{k \rightarrow \infty} \sup _{w \in \varphi(\mathbb{D})}\left|f_{k}^{(n)}(w)\right|=0
$$

So,

$$
\begin{aligned}
\left\|I_{g, \varphi}^{(n)} f_{k}\right\|_{\mathcal{B}^{\alpha}} & =\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|\left(I_{g, \varphi}^{(n)} f_{k}\right)^{\prime}(z)\right| \\
& =\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|f_{k}^{(n)}(\varphi(z))\right||g(z)| \\
& \leq M \sup _{z \in \mathbb{D}}\left|f_{k}^{(n)}(\varphi(z))\right| \longrightarrow 0 \quad \text { as } k \rightarrow \infty .
\end{aligned}
$$

Hence, by Lemma 3.5, $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$ is compact.
Theorem 3.7. Let $g \in H(\mathbb{D}), n \in \mathbb{N}, \varphi$ be a holomorphic self-map of $\mathbb{D}, 0<\alpha, p<$ ∞ and $\beta>-1$. If $\|\varphi\|_{\infty}=1$, then the following statements are equivalent:
(i) $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$ is compact.
(ii) $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$ is bounded and

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n-1}}=0 . \tag{3.11}
\end{equation*}
$$

Proof. (i) \Longrightarrow (ii). Suppose that $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$ is compact. Obviously, it is bounded. We consider the function f_{a} for $a \in \mathbb{D}$ defined as in Theorem 3.4. This function converges to zero uniformly on compact subsets of \mathbb{D} as $|a| \longrightarrow 1$.

Now, pick the sequence $\left\{z_{m}\right\} \subseteq \mathbb{D}$ such that $\left|\varphi\left(z_{m}\right)\right| \longrightarrow 1$ as $m \longrightarrow \infty$. Using the test function $f_{m}(z)=f_{\varphi\left(z_{m}\right)}(z)$, we obtain

$$
\begin{aligned}
\left\|I_{g, \varphi}^{(n)} f_{m}\right\|_{\mathcal{B}^{\alpha}} & =\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|\left(I_{g, \varphi}^{(n)} f_{m}\right)^{\prime}(z)\right| \\
& =\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|f_{m}^{(n)}(\varphi(z))\right||g(z)| \\
& =\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|f_{\varphi\left(z_{m}\right)}^{(n)}(\varphi(z))\right||g(z)| \\
& \geq\left(1-\left|z_{m}\right|^{2}\right)^{\alpha}\left|\frac{\left|\overline{\varphi\left(z_{m}\right)}\right|^{n}\left(1-\left|\varphi\left(z_{m}\right)\right|^{2}\right)^{\frac{\beta+2}{p}}}{\left(1-\overline{\varphi\left(z_{m}\right)} \varphi\left(z_{m}\right)\right)^{\frac{2(\beta+2)}{p}+n}}\right||g(z)| \\
& \geq\left(1-\left|z_{m}\right|^{2}\right)^{\alpha}\left|\frac{\left|\varphi\left(z_{m}\right)\right|^{n-1}}{\left(1-\left|\varphi\left(z_{m}\right)\right|^{2}\right)^{\frac{\beta+2}{p}+n-1}}\right|\left|g\left(z_{m}\right)\right| .
\end{aligned}
$$

As we mentioned above, since $f_{m}=f_{\varphi\left(z_{m}\right)}$ converges to zero uniformly on compact subsets of \mathbb{D} as $\left|\varphi\left(z_{m}\right)\right| \longrightarrow 1$, from Lemma 3.5 it follows that $\left\|I_{g, \varphi}^{(n)} f_{m}\right\|_{\mathcal{B}^{\alpha}} \longrightarrow 0$ as $\left|\varphi\left(z_{m}\right)\right| \longrightarrow 1$ and so, (3.11) holds.
(ii) \Longrightarrow (i). Let $\left\{f_{k}\right\}$ be a bounded sequence in the unit ball of \mathcal{D}_{β}^{p} that converges to 0 uniformly on compact subsets of \mathbb{D} as $k \longrightarrow \infty$. The relation (3.11) implies that for every $\varepsilon>0$ there is a $\delta \in(0,1)$ such that

$$
\begin{equation*}
\sup _{\{z: \delta<|\varphi(z)|<1\}} \frac{\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n}}<\varepsilon . \tag{3.12}
\end{equation*}
$$

Also, the uniform convergence of $\left\{f_{k}\right\}$ on compact subset of \mathbb{D} together with Cauchy's estimate, implies that $\left\{f_{k}^{(n)}\right\}$ for $n \in \mathbb{N}$ converges to 0 on compact subset of \mathbb{D} as $k \longrightarrow \infty$. This implies that

$$
\begin{equation*}
\lim _{k \longrightarrow \infty} \sup _{|w| \leq \delta}\left|f_{k}^{(n)}(w)\right|=0 . \tag{3.13}
\end{equation*}
$$

Then, by (3.6), (3.7) and (3.12) we get the following:

$$
\begin{aligned}
\left\|I_{g, \varphi}^{(n)} f_{k}\right\|_{\mathcal{B} \alpha}= & \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|\left(I_{g, \varphi}^{(n)} f_{k}\right)^{\prime}(z)\right| \\
= & \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|f_{k}^{(n)}(\varphi(z))\right||g(z)| \\
= & \sup _{|\varphi(z)| \leq \delta}\left(1-|z|^{2}\right)^{\alpha}\left|f_{k}^{(n)}(\varphi(z))\right||g(z)| \\
& +\sup _{\delta<|\varphi(z)|<1}\left(1-|z|^{2}\right)^{\alpha}\left|f_{k}^{(n)}(\varphi(z))\right||g(z)| \\
\leq & L \sup _{|w| \leq \delta}\left|f_{k}^{(n)}(w)\right| \\
& +C\left\|f_{k}\right\|_{\mathcal{D}_{\beta}^{p}} \sup _{\delta<|\varphi(z)|<1} \frac{\left(1-|z|^{2}\right)^{\alpha}|g(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\frac{\beta+2}{p}+n-1}} \\
\leq & L \sup _{|\varphi(z)| \leq \delta}\left|f_{k}^{(n)}(\varphi(z))\right|+C \varepsilon\left\|f_{k}\right\|_{\mathcal{D}_{\beta}^{p}} .
\end{aligned}
$$

Letting $k \longrightarrow \infty$ and using (3.13), it folloes that $\left\|I_{g, \varphi}^{(n)} f_{k}\right\|_{\mathcal{B}^{\alpha}} \longrightarrow 0$. Thus, Lemma 3.5 implies that $I_{g, \varphi}^{(n)}: \mathcal{D}_{\beta}^{p} \longrightarrow \mathcal{B}^{\alpha}$ is compact.

References

[1] D. C. Chang, S. Li and S. Stevic, On some integral operators on the unit polydisc and unit ball, Taiwanese J. Math., 11(5)(2007), 1251-1285.
[2] F. Colonna and S. Li, Weighted composition operators from the Besov spaces into the Bloch spaces, Bull. Malays. Math. Sci. Soc., 36(4)(2013), 1027-1039.
[3] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
[4] Z. H. He and G. Cao, Generalized integration operators between Bloch-type spaces and $F(p, q, s)$ spaces, Taiwanese J. Math., 17(4)(2013), 1211-1225.
[5] S. Kummar, Weighted composition operators between spaces of Dirichlet-type, Rev. Math. Complut., 22(2)(2009), 469-488.
[6] S. Li and S. Stevic, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338(2)(2008), 1282-1295.
[7] S. Li and S. Stevic, Products of volterra type operator and composition operator from H^{∞} and Bloch spaces to Zygmund spaces, J. Math. Anal. Appl., 345(1)(2008), 40-52.
[8] S. Li and S. Stevic, Products of integral type operators and composition operators between Bloch-type spaces, J. Math. Anal. Appl., 349(2)(2009), 596-610.
[9] S. Li and H. Wulan, Volterra type operators on Q_{k} spaces, Taiwanese J. Math., 14(1)(2010), 195-211.
[10] L. Liu, Z. Lou and C. Xiong, Essential norms of integral operators on spaces of analytic functions, Nonlinear Anal., 75(13)(2012), 5145-5156.
[11] Y. Liu and Y. Yu, Riemann-Stieltjes operator from mixed norm spaces to Zygmundtype spaces on the unit ball, Taiwanese J. Math., 17(5)(2013), 1751-1764.
[12] W. Ramey and D. Ullrich, Bounded mean oscillation of Bloch pull-backs, Math. Ann., 291(4)(1991), 591-606.
[13] A. Salaryan and H. Vaezi, Adjoints of rationally induced weighted composition operators on the Hardy, Bergman and Dirichlet spaces, Period. Math. Hungar., 72(2016), 76-89.
[14] J. H. Shapiro, Composition operators and classical function theory, Springer-Verlag, New York, 1993.
[15] S. D. Sharma and A. Sharma, Generalized integration operators from Bloch type spaces to weighted BMOA spaces, Demonstratio Math., 44(2)(2011), 373-390.
[16] S. Stevic, Boundedness and Compactness of an integral type operator from Bloch-Type spaces with normal weights to $F(p, q, s)$ space, Appl. Math. Comput., 218(9)(2012), 5414-5421.
[17] M. Tjani, Compact composition operators on some moebius invariant Banach spaces, Thesis (Ph. D.), Michigan State University, 1996.
[18] H. Vaeiz and S. Houdfar, Composition and weighted composition operators from Blochtype to Besov-type spaces, Math. Reports, to appear.
[19] D. Vukotic, A sharp estimate for A_{β}^{p} functions in \mathbb{C}^{n}, Proc. Amer. Math. Soc., 117(1993), 753-756.
[20] Y. Yu, Y. Liu, Integral-type operators from weighted Bloch spaces into Bergman-type spaces, Integral Transforms Spec. Funct., 20(6)(2009), 419-428.
[21] K. Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker, Inc., New York, 1990.
[22] K. Zhu, Bloch type spaces of analytic functions, Rochy Mountain J. Math., 23(1993), 1143-1177.
[23] K. Zhu, Generalized weighted composition operators from Bloch type spaces to weighted Bergman spaces, Indian J. Math., 49(2)(2007), 139-150.
[24] X. Zhu, An integral type operator from H^{∞} to Zygmund-type spaces, Bull. Malays. Math. Sci. Soc., 35(3)(2012), 679-686.

