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MULTIPLIERS ON THE DIRICHLET SPACE D(Q)

YOUNG-CHAE NAH

ABSTRACT. Recently S.Axler proved that every sequence in the unit
disk U converging to the boundary contains an interpolating subse-
quence for the multipliers of the Dirichlet space D(U). In this paper
we generalizes Axler’s result to the finitely connected planer domains
such that the Dirichlet spaces are contained in the Bergman spaces.

1. Notations and terminologies

Througout this paper 2 denotes a domain in the complex plane C such
that no connected component of 99 is equal to a point. The Bergman
space B(Q) is the Hilbert space of analytic functions f on @ such that
Jo | f1* d4 < oo, with the inner product

< Frg >nm= /ﬂ fgdA

where dA denotes the usual area measure on €. Let zg be in . The
Dririchlet space D(S, z) is the Hilbert space of analytic functions f on
@ such that [, | f'|? dA < oo and f(z0) = 0, with the inner product

(1.1) < f,9 >py= / flg'dA.
Q

Changing the distinguished point zg gives a space that is obtained from
the original by subtracting a suitable constant from each function. We
will use D(Q) instead of D(2, z9) if the distingnished point is irrelevant.
The square of the Dirichlet norm of f is just the area of the mmage of
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Q) under f. counting multiplicity. It is well known that point evaluation
maps on D(Q) are bounded (see Taylor [9]). We will use || f Hi?(ﬂ)
to denote [, | f'|* dA even though f € H(Q)\D(, 20) where H(Q)
is the set of analytic functions on €. An Analytic function ¢ on §
is called a multiplier of D(Q) if ¢f € D(2) for all f € D(Q2). Let
© € M({D(Q)), the set of all multipliers of D(Q2). The linear transfor-
mation M, : D(2,z0) — D(§,20) defined by M,f = of 1s bounded;
This follows from the Closed Graph Theorem and the boundedness of
point evaluation maps. M, is called a multiplication operator. Giv-
ing each function in M(D(Q)) the operator norm of the correspond-
ing multiplication operator makes M(D()) into a normed space. If
© € M(D(Q)), then p is in the set of bounded analytic functions H*({2)
with || ¢ [lec <|| M || (see [7], Lemma 11).

Recall that an operator T on a Hilbert space H is called Fredholm
if the kernel of T and H/TH are both finite dimensional vector spaces.
These conditions imply that T has closed range (see [2], Cor 3.2.5).
Suppose T is an operator on a Hilbert space H. The cssential spectrum
of T. denoted o (T), is defined to be the set of complex numbers ¢ such
that T — ¢ is not Fredholm. o (T) is precisely the spectrum of T in the
Calkin algebra L{H)/K(H) where L( H) denotes the set of all bounded
operators on H, and N(H) denotes the set of all compact operators on
H (see Douglas [6]). If ¢ iy an analytic function on §, then the cluster
set of p on 09, denoted ¢l(p; 9Q), is the set of complex numbers ¢ such
that there exists a sequence {z,} in € such that z, tends to 9Q and
flz,) — cas n — oa.

2. Introduction

Suppose H is a normed linear space of analytic functions on 2. Let
{z,} be a sequence of points in  and let {c,} be a sequence of com-
plex numbers. The interpolation problem for H is finding a function
f in H such that f(z,) = ¢, for all n. A sequence of points {z,} in
Q0 is called an interpolating sequence for H if, for every bounded se-
quence {c,}, there is a function f in H such that f(z,) = ¢, for all
n. Carleson first solved the interpolation problem for H*®(U), the set
of bounded holomorphic functions on the open unit cisk U. He proved
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that a necessary and sufficient condition for the given sequence {z,,} in
U to be an interpolating sequence for H>(U) is that the sequence {zn}
is uniformly separated (see Carleson [3]). Later this subject was studied
by many mathematicians and played a crucial role in studying closed
algebras between L*°(U) and H*°(U), and in studying maximal ideal
space of H*(U). Recently Chan and Shields studied a universal inter-
polating sequence for D(2); see {4]. We encountered the interpolation
problem for M(D(Q)) to characterize the essential spectrum of a multi-
plication operator on D(§}). We will prove that if every sequence {z0}
in § converging to 9Q has an interpolating subsequence for M(D((Q)),
then o.(M,) =cl(p; 0Q).

3. Main theorems

First we will prove that M(D(R)) is weak-* closed in L(D(f2)), the set
of all bounded operators on D(Q). Let H be a Hilbert space. Let S;(H )
denote the set of trace class operators on H, and let F,(H) denote the
set of rank n operators; namely the set of operators on H whose range
has dimension n. We know that L(H) = (S1(H))* with the pairing
< 5, T >= tr(ST) where S € S1(H), T € L(H). Here tr(ST) is defined
to be Z < STej,e; > where {e;};jes is any orthonomal basis of H

jed
(see, for example, Zhu [10], Chapter 1).

PROPOSITION 3.1. Suppose Q is a domain in C. Then M(D(Q)) is

weak-* closed in L{D(Q)).

PROOF. Let {¢q}aca be a net in M(D(Q)). Suppose M, — T
weak-* in L(D(€)). We must show that there is a function ¢ in H>(Q)
such that T = M. Since M,, — T weak-* implies < S, M,, > —
< 5, T > for all §in S;(D(R)), by the pairing,

(3.2) tr(SM,,. ) — tr(ST)

for all §in S1(D(R)). Fix a point = in Q and fix a function f in D(Q).
Let A; be a point evaluation map on D(Q) at z. Define an operator

;@ f: D(R) — D(Q) by
(A: @ f)Ng) =< 9,7 >peay f = g(z)f.
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Let S= A, ® f. Then S € Fi(D(2)) C 51(D(£2)). Let e; = ——i——-—
I f by

Expand {e;} to an orthonomal basis {e;}jes of D(§2). Then, for all
o€ Aand j e J,

(3.3) SM,.e; = S(pac;) = pal2)e(2)f = pal2)ejtz) || f D) €1
Hence

tr (SMy,) =Y < SM, e;.e; >pay=< SMy,e1,e1 >py by (3.3)

jeJ
_ veittf — o () f(
= < palz)er(2)f, 7———— >p@y= @al:) f(2).
I £ by
Similarly tr(S7T) = Z < STej,e; >pay=< STer,e1 >pa)
jed
=< (Ter )( ” fH o >D(Q)= (T f))=)
Hence, by (3.2), for all z in 2 and for all f in D(Q),
(3.4) Palz)f(z) = (T(f))=).
Let ¢g(z) = = — zo where 2y 1s the distinguished point in D(§2). Then
g 1s in D(§2). Define a function ¢ on §2 b) wlz) = (J()() ). Then ¢
g(z
is in H(§2) since (T(g))(z0) = 0, palz)g(z) — (T(9))(2) = @(=)g(=)

pointwise on {2, and so p4(z) converges to np( ) pomrwme on §2. Hence
wal(2)f(2z) = p(2)f(z) for all = in @ and for all f in (). By (3.4), we
can conclude that T' = M. (As a multiplier, ¢ is in H>*(Q?)). Hence T is
in M{D(2)) and so M(D{£2)) is weak-* closed in L(I)()). Q.E.D.

Since M(D(Q)) is weak-* closed in S1(D(Q))*, L21(D(£)). the pre-
anihilator of M(D(€})), is a closed subspace of S;(D:2)). Hence M(D
( )) is a dual space of a Banach space; namely

M(D(Q)) = (S1(D(Q))/LM(D(Q)))* since, for any normed linear space
X and its closed subqpace YV, (X/Y)* =Y+ and (1Y) =Y. We will
use B to denote S1(D(Q))/+ 7\[ D(£2)) throughout thuis paper. We know



Multipliers on the Dirichlet space D(£2) 637

that the weak-* topology on M(D((2)) as a dual space of B equals the
weak-* topology on M(D()) as a subspace of L(D(Q)) = S;(D(Q))*.

In what follows, ¢! is the set of sequences ¢ = {a;} in C such that

Z | @ |< oo, and £ is the set of bounded sequence in C. The following
i=1

Dor-Rosenthal Theorem will be needed to prove Theorem 3.5. H. P.
Rosenthal proved this theorem for the real Banach space in [8] and later
L. E. Dor proved the complex version of theorem that is shown hLere; see

[5].

DOR-ROSENTHAL THEOREM. Let B be a {complex) Banach space
and let {g,} be a bounded sequence in B. Then {g,} has a subsequence
{gn; } satisfying one of the following two mutually exclusive alternatives.

(1) The map A" — {the closure of linear span of {gn; }52, in B}

o
defined by Ala) = Z ajgn; 18 an isomorphism.
=1
(2) lm < g, f> exists for all f in B*.
j—o0

Let (2 be a domain in C. A sequence {z;} in  is called an interpolating
sequence for M(D(Q)) if, for all b € ¢°°, there exists a function f in
M(D(£2)) such that f(z;) = b, for all j in M. Let z € Q. Note that the
point evaluation map on M(D(f2)) at z, denoted «,, is bounded since
| 52(9) [=1 (=) 1SNl @ low <l M, | for all € M(D(Q)).

THEOREM 3.5. Suppose 0 is a domain in C. Let {zn} be a sequence
in Q. Then {z,} has a subsequence {z,,} satisfving one of the following
exclusively.

(1) {zn,} is an interpolating sequence for M(D(f)).

(2) lim ¢(zn,;) exists for all  in M(D(R)).

J—00

PROOF. Let {z,} be a sequence in Q. Since point evaluation maps
on M(D(R)) are bounded with the norms < 1. for each n € N, there
exists a function g, € M(D(Q2))* = B** such that || g, ||8< 1 and, for
all p in M(D(£)),

(3'6) <@, gn >= Ko (9) = @(2n).
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Apply the Dor-Rosenthal Theorem on {gn}. Suppose {zn;} is a sub-

sequence of {z,} that satisfies (1) in the Dor-Rosenthal Theorem. Let
>0

b€ (. Define a linear map S : ¢! — > by S(a) = Z a;b; and define a
jo=1
linear map T from {the closure of linear span of {¢,}°2; in B} into C by
T(f) = S(A7Y(f)). Since T is bounded, by the Hahn-Banach Theorem,
there exists a ¥ in B* = M(D(f)) such that the restriction of ¥ on the
closure of linear span of {¢,;}32, in Bis T. Fix j in N. Then ¥(gn;) =
T(gn;) = b;. On the other hand ¥(gn; ) =< gn;, ¥ >= P(zn, ) by (3.6).
Hence ¥(z,,) = bj for all j and so {zn,; }is an interpolating sequence for
M(D(Q)). Suppose {z,,} is a subsequence of {2} that satisfies (2) in
the Dor-Rosenthal Theorem. Then lim < g, ,p >= jlil};o ©(z,, ) exist

]—00
for all ¢ € M(D(Q)). Q.E.D.

Suppose {z,} C Q is an interpolating sequence for M(D(2)). Then
a map ® : M(D(Q)) — (™ defined by ®(¢) = {p(z,)} is onto. By the
Open Mapping Theorem, there exists a constant I{ such that
“q)_](b)”M(D(Q)) < If”l)“(m for all b € (°°.

THEOREM 3.7. Let @ € M(D(R2)). Suppose there is a sequence {z,}
in Q@ such that z,, — 0 and ¢(z,) — 0. If {z,} has an interpolating
subsequence for AM(D(Q)). then M is not a Fredhlom operator.

PROOF. Suppose {z,, } is an interpolating subsequence of {z,}. For
each & in N, let V¥ = (0,... 00,9020, ), @(Znkge )y o+ ). Then, since
go(znj) — 0, b* € ¢ for all k in . Hence, for each b* . there exists

wr € M(D(£2)) such that

58] . )“{0 ity <k
. Yi~n; ) = 5—9(:“_,') if j>l\

By the comment preceding this theorem, there is a constant I\’ such that
okl azcpiay < KJ|0F|le~ for all k in A, Since [[b¥]j¢ — 0 as k — oo,

(3.9) lekllarpiay — 0

as k — oo.
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Note that, by (3.8),

o= { £ <
(P =eelen) =1 it 5>k

Hence
(3.10) RangeM,_., C ﬂj“;kKerz\,nJ_ .

where ’\znj is a point evaluation map on D(f2) at z,;. Since {/\:,,), }isa
linearly independent subset of L(D(f2)), the right hand side of (3.10) has
an infinite codimension and so does RangeM,,_,. Therefore M,,_, is
not Fredholm. Note that

(3.11)
”M‘P—w - MLp“L(D(Q))
=sup{||[(v — v&) — ) flip) : f € D), fllpiay = 1}
=sup{llex fllp) : f € D), || fllp) = 1}

<My, llLcpiay = lleellmpa)-

By (3.9), the right hand side of (3.11) tends to 0 as ¥ — oo. Hence
Me—yp, — M, in L(D()). Since the set of Fredholm operators is open
in L(D(£)), and M,_,, is not a Fredholm operator for each k, M., is

not a Fredholm operator. Q.E.D.

The following lemma can be proved using the mean value property
of the analytic function, Hélder’s inequility, the Cauchy Formula, and
Uniform Boundedness Principle.

LEMMA 3.12. Let z € Q and let n € N'U{0}. Then the map A, :
D(R,z9) — C defined by A, ,,(f) = f(")(z) is a bounded linear function.

Suppose (2 is a bounded domain in C such that D(Q) ¢ B(Q). Let
¢ € M(D(82)) and suppose that 0 € cl(¢;99), i.e.  is bounded away
from 0 near 9§). We want to show that M, is Fredholn. Let z;,... ,z,
be the distinct zeros of v in Q. For j = 1,...,n let m(z;) be the
multiplicity of the zero of ¢ at z; if z; = zp, and let m(z;) be (the
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multiplicity of the zero of ¢ at z;)+1 if z; = z9. Let E be the subspace
of D(£2, zp) consisting of all functions f in D(§2, zg) such that f vanishes
on {z1,...,2,} with multiplicity bigger than or equal to m(z;) at each

z;. Let f € E. Then —f- € H(Q) and I'(Z(]) = 0. To see i s 1in D{Q, z0),
@ v @

observe that (—t) = (—f—f———;&-)
¥ ¢
Since v € M(D(2)) implies ' D(2) C B(£2), the numerator is square

integrable on Q. and so = € D(§,z9). Hence f is in the range of M,

and so E is contained in the range of M. Note that
E = {I\'er/\:j‘k cy=1... .nand k=0,... ,;m(z;) — 1} )

Being an intersection of the kernels of finitely many linear functionals,
E has a finite codimension. Since KerM, = {0}, M, is Fredholm. We
just prove that o.(M_) C cl(p;08) for a bounded domain € in C such
that D(2) C B(). Now suppose that every sequence in 2 converging to
0f2 has an interpolating subsequence for M(D(2)), then, by the above
theorem, cl(y;0Q) C 0.(M_). Hence, to prove o (M) = cl{p; 082), it
is enough to show that every sequence in  converging to J€? has an
interpolating subsequence for M{D(£2)).

Suppose § is a finitely connected bounded domain in C with m holes.
The m + 1 mutually disjoint simple closed curves consisting of J€) will be
donoted by I'g. Ty, ... ,T'),. where I'y is the boundary of the unbounded
component of S?\ Q. Q, or sometimes Uy, will be used to denote the
bounded component of S? \ Ty, and U; will be used to denote the un-
bounded component of S* \ T'; for each j = 1,... ,1n. Let A; be con-
nected neighborhood of I'; in @ such that 4; N A4y is an empty set if
J = k. Using the decomposition theorem for a holomorphic function, we
can show that, for each f in D(§), there is a function f; in D(Q;)NH(U;)
foreach y = 1,... ,m, such that f = fy + fi +--- + fm on §.

The following lemma can be proved using change-of-variables.

LEMMA 3.13. Let @, and 3 be two domains in C and let zy € (4
and wy € Qp. Suppose ¥ is a conformal mapping from Q, onto §; such
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that ¥(wg) = z9. Then

(1) the composition map Cy : D(Q,2) — D(Q3,wo) defined by
Cy(f) = f oW is a unitary map,

(2) the composition map Cy : M(D(Q4,20)) = M(D(Q;,wg)) de-
fined by Cy(p) = ¥ o ¢ is an onto isometry.

S. Axler proved that, for every sequence {z,} in U converging to dU,
there exists a multiplier ¢ of D(U) such that lim @(z,,) does not exist;
i -—r 00

see [1]. Now we are ready to prove the following theorem.

THEOREM 3.14. Suppose § is a finitely connected bounded domain
in C such that D(Y) C B(2). If {z,} is a sequence in § converging to
Of), then there exists a multiplier o of D(K2) such that lim ¢(z,) does

not exist.

PROOF. Let {z,} be sequence in Q converging to 9. We may assume
that I'g is OU and {z,} converges to Iy by Lemins 3.13. Then there exists
@ € M(D(Q)) such that nlin;oc,o(zn) does not exist. We claim that  is in
M(D(R)). Let f € D(Q). Since (¢f) = ¢'f+ ¢f" and @f'is in B(R),
it suffices to show that ¢'f is in B(Q). On O\ 4,, ¢’ is bounded. Since
D(2) C B(Q),¢'f is square integrable on 2\ Ay. By the decomposition
of f,f=fo+ fi+ - + fm where fi € D(;) N H(Uj) for each 5. ' fy
1s in B(§)) because fy is in D(U) which is a subset of B(U). Note that
f; 1s bounded on Ay because f; is in H(U;) for each j = 1,... ,m. and
v € D(Q) implies ' € B() since  is bounded. Hence ' f is square
integrable on Ay and ¢ is in M(D(Q2)). Q.E.D.

Suppose  is a finitely connected bounded domain in C such that
D(Q) C B(Q). By Theorem 3.5 and the above theorem, we can conclude
that each sequence in 2 converging to 99 has an interpolating subse-
quence for the M(D(f)). Hence, by the comments following Lemma
3.12, we have the following corollary.

COROLLARY 3.15. Suppose (2 is a finitely connected bounded domain
in C such that D() C B(Q). Let » € M(D(Q)). Then (M) =
cl(p; O0).
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