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PRODUCTS OF DIFFERENTIATION AND COMPOSITION
OPERATORS FROM THE BLOCH SPACE AND WEIGHTED
DIRICHLET SPACES TO MORREY TYPE SPACES

QINGHUA HU AND SONGXIAO L1

ABSTRACT. In this paper, we characterize the boundedness, compactness
and essential norm of products of differentiation and composition op-
erators from the Bloch space and weighted Dirichlet spaces to analytic
Morrey type spaces.

1. Introduction

Let D denote the open unit disk in the complex plane C and 0D be its
boundary. Let H(D) denote the space of all functions analytic on D. For

a €D,g(z,a) =log wa—l(z)‘ is Green’s function on D, where 0,(2) = {== is the

Mébius transformation of D. For a subarc I C 9D, let S(I) be the Carleson
box based on I with

S(I):{zeD:l—I§|z|<1,ﬁe[},

where |I| = 5= [} |d¢| is the normalized length of the subarc I of OD. If I = 9D,
let S(I) = D. Let p be a nonnegative Borel measure on D. We say that p is a
Carleson measure on D if

n(S(1))

[p)? = sup = < co.
rcop ||

Here and henceforth sup; gy, indicates the supremum taken over all subarcs I
of OD. -

As usual, H* is the set of bounded analytic functions in D. An f € H(D)
is said to belong to the Bloch space, denoted by B, if (see [22])

1f1lg = sup(1 — [z[*)|f(2)] < oc.
z€D
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B is a Banach space under the norm || f||g = |f(0)| + || f||g. The little Bloch
space, denoted by By, is the closed subspace of B consisting of functions f with
lim 1 (1 — [2[2)['(2)] = 0.

For 0 < p<ooand a > —1, the weighted Bergman space, denoted by A?,
is the set of all functions f € H ) satisfying

11 = o+ 1) [ 1FIP( = 2R)dAG) < o0

where dA is the normalized Lebesgue area measure in D such that A(D) = 1.
The weighted Dirichlet space D consists of those f € H(ID) such that f' € AP.
Hence, for f € D2 we have

1 1%e = [F O + L[ < oo

It is well known that AF, =D},  (see, e.g., [22]).
For 0 < p < oo, the Hardy space H? consists of all f € H(D) such that

1 [ ,
I fI%» = sup o J, |f(re®)|Pdl < oco.
o<r<1
Let K : [0,00) — [0,00) be a right- continuous and nondecreasing function.

The analytic Morrey type space, denoted by HZ, is the space of all analytic
functions f € H? on D such that

1
2

_1 lad]
fi= | rofgt e

See [20] for more information of the Morrey type space Hz. When K (t) = t,
it gives the BM OA space. It is well known that f € BMOA if and only if

sup / PR — |ou(2) 2)dA(z) < 00

acD

2Jdc]
fI| 21 <

3

where

When K(t) = t*(\ € (0,1)), H% is the Morrey space £2*, which was studied
by Wu and Xie in [18].

Let S(ID) denote the set of all analytic self-maps of D. Let ¢ € S(D). Let Z
denote the set of nonnegative integer. For f € H(D), the composition operator
C, on D is defined by

Cy (f)=Ffop
The operator C, D" is defined by C, D" f = f™ o, where n € Z. If n = 0,
we get the composition operator Cy,. If n = 1, we get the operator C,D,

which was studied in [4, 5, 6, 7, 8, 14, 15, 17, 24, 25]. In [13], Smith and
Zhao characterized the boundedness and compactness of C, : B — Q,. In
[19], Wulan characterized the boundedness and compactness of C,, : B — Q.
In [9], Lindstrom etc. gave an asymptotic formula for the essential norm of
the operator C, : B — Q,. In [12], Réttyd gave an asymptotic formula for
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the essential norm of a composition operator C, : D — Q,,. Recall that the
essential norm of a bounded linear operator T': X — Y is its distance to the
set of compact operators K mapping X into Y, that is,

e.xoy = inf{||T — K| x—vy : K is compact},

where X and Y are Banach spaces, || - || x—y is the operator norm.

In this paper, we study the boundedness, compactness and essential norm
of products of differentiation and composition operators C, D™ from the Bloch
space and weighted Dirichlet spaces to analytic Morrey type spaces.

Throughout this paper we need some constraints on K. Let @i be defined
by

K (st)

1 s)= sup ——, 0 < s < 0.
M P (s) 0<t51 K(t)’

By [3], we may suppose that K is defined on [0, 1] and extend its domain to
[0, 00) by setting K(t) = K(1) for ¢t > 1, K(t) = K(2¢t) and

(2) A%E§%<mmdf%%®%<m

s 1 52

We shall also use the following standard notation: f < g means that there is a
constant C independent of the relevant variables such that f < Cg, and f ~ ¢
means that f < g and g < f.

2. Characterization of the operator C,D™ : B — HZ

Lemma 2.1 ([20]). Let K satisfy the conditions in (2). Then the following are
equivalent:

(a) f € Hi;

(b) sup,cp Kil lTa\ 5 Jp I/ (2)Pg(2, a)dA(z) < oo;

(C) SUPgeb Kil_ T,L\ 7 fD |f 1 |Ua( )|2)dA(Z) <0
(d) SUDPrcop K(|1|) fs([) |ff Z)| (1- |Z| JdA(z) < o0

Remark 2.1. By Lemma 2.1, for f € H%, we have
1|W
1, = sup =i [ 17/0)Pa(.a)da(e)
1- |a|2 / 2
~ su — |oa(2)]°)dA(2
sup e 1P = @A)

%imKWDémV(ﬂﬂﬂdda
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Lemma 2.2 ([22]). For every positive integern, f € B if and only if sup,p(1—
|22)" £ (2)] < o0. Moreover, the following asymptotic relationship holds

n—1
1£1ls = Y 1F9(0)] + sup(t — [2*)"|F) (2)].
k=0 zeD

The following lemma is widely known, but we can not find a proof for it.
Here we give a complete proof.

Lemma 2.3. A sequence {f;} in By converges weakly to 0 in B if and only if
sup; || fillg < oo and f; — 0 pointwise in D.

Proof. From Theorem 5.15 in [22], we see that the dual space of By is A!, the
Bergman space. Proposition 1.2 in [2] dictates that f; converges weakly to 0
in By if and only if sup; || f;][s < oo and f; — 0 pointwise in D. Now consider
the sequence {f;} as belonging to B. It is easy to see that weak convergence
in B is equivalent to weak convergence in By. In one direction, restrict an
arbitrary functional on B to a functional on Bp; in the other direction, use the
Hahn-Banach theorem to extend an arbitrary functional on By to a functional
on B. O

Theorem 2.1. Let ¢ be an analytic self-map of D,n € Z and K satisfy the
conditions in (2). Then the following statements are equivalent:

(a) C,D™ : B— H% is bounded;

(b)

su L~ |af? ' (2)I? _ . o
aeB K(1—|a]?) /D (1— |@(z)|2)2(n+1)9( ya)dA(z) < ooy

()

- Jop CEP e
0D oy TR~ eI )AG) < 0

(d)

1 / ¢ (=) 2
sup ——— (1 —12]7)dA(z) < o0.
1con K(I11) Jsqy (1 = [p(2)[?)20+D)
Proof. (a)=-(b). Assume that C,D" : B — H% is bounded, we have
1Ce D™ flluz < [IC D[]l £l

for all f € B. By [23] we may choose two Bloch functions f; and fo satisfying

1 n+1 n+1
A= zp ~ [fMTV @)+ 115V ()], 2 e D.

So that

% ~ | 0@ @]+ 157 0 ) ()]
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By elementary inequality (a + b)? < 2(a® 4 b?), we get
(=)
s S 2 o AP + 207 0 ) (P,

(1= Jp(2)[?)2("+1)
which implies that

sup 1- |a’|2 / |</0/( )|2 (z,a)dA(z)

neh K(1—[aP?) Jp (1 — [o(z) )20 7
— |af? () \rng2 NN
siggm/m(ul 0 @) ()P +1(57 0 9) (2) ) (2, a)dA(2)

SNCD™ P(AllE + 1 f21lB) < oo,

as desired.
(b)=(a). Let f € B. By the assumption, Remark 2.1 and Lemma 2.2, we
have

1— 2
ICo D" £ 572 %Supﬁ/ (") 0 ) (2)%g(2, a)dA(2)
_ 1—|a? [fOV () PA — (=) P>+
= SRR G e PG A
1—|af? ' ()2
S W e [ o S ey o 4A()
< 0.

Thus C, D" : B — H# is bounded.
(a)=(d). Assume that C,D" : B — Hj is bounded. Fix an arc I C oD
and consider the test function

Frns(2) =3 2k 2" 2" ()2 242
mzﬂz_k_12k+2m22k+2m271 2k+2m2fne :

for my € N such that 2™ —n > 0 and 0 € [0,27). It is easy to check that
| fma,0llB < co. By Fubini’s theorem we have

do

HZ_

1 "N2(1 — 12|12 (n+1) 2% 2
2 T fa A {1 P aac)

for all mg € N. Parseval’s formula gives

2m 2w X
/ IS NP a2 = [p(z) e / | are 020 o )2 1|
0

2m o i 2w

2T
o> / 1CoD" frna ol
0

mo+1_op > n k_
= |(2)[? Yy P () PR,
k=1
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By the formula (3.8) in [10], it is obvious that when |¢(2)| > %, we have

o0

1
22k(n+1)|(p(z)|2(2k_1) Z )
,; (1= Jep(z)[?)2(+D)
Hence we obtain

(3) 1 / ' (2)]
K(1D) Jstn ntieeis2) (1= le(z)2)20FD
for any I C OD. Since C,D" : B — HIQ( is bounded, applying the operator
Cy,D" to 2"*1 we obtain ¢ € HIQ( Thus
(4) 1 / |/ (2)P?
K1) Jstyniipe)< gy (L= lo(2)[2)2n D)
for any I C 9D. Inequalities (3) and (4) show that
1 / ' (2)]? 2
o (1 = [2[7)dA(z) < oc.
1cop K(II1) Jsery (1= [g(2)[2)2+D)

The proof of (d)=-(a) is similar to (b)=-(a), (a)=-(c) is similar to (a)=(b)
and (c)=-(a) is similar to (b)=(a). Hence the proof of these are omitted. The
proof is completed. O

(1 —|z]*)dA(z) < oo

(1 —|z]?)dA(z) < o

Theorem 2.2. Let ¢ be an analytic self-map of D,n € Z and K satisfy the
conditions in (2). Suppose that C,D™ : B — H#% is bounded. Then

1CoD" o s, ~ VAR VB ~ V.
Here

i 1 - |a” ' (=)
A = limsup sup 7/ 9(z, a)dA(2),
r—1 aep K (1 —lal?) (o(2)|>r) (1= [p(z)[2)2(n+D)

i L~ |a” | (=) ,

B= hmsupsupi/ (1 — |oa(2)2)dA(2),
ro1 aeb K(1=1al?) Jype)sn (1= lp(2)]2)2+0

1

U = limsup sup —/ |('0/(Z)2|22( T
r—1 1cop K(I)) Jsnge)>r (1 = lp(2)[2)2n+D

Proof. First we prove that
ICoD e smz. 2 VA.
Let {Am, } € (1/2,1) such that A, — 1 as m; — co. Define

(1 - [2?)dAG).

fm1,m279('z)
_ 22™ f: 9k(n+1) ()\ ew)QkZQk
Amy =t (2K 42m2)(28 +2m2 — 1) - (2K + 2m2 — n) m
1 & 2k 2k ok ok ok om
_ A, €0)2" ;252
\ Z2k+2mz2k+2mz—1 oh oy gme — M €)T 2

mop—q



PRODUCTS OF DIFFERENTIATION AND COMPOSITION OPERATORS 633

for my, ms € N such that 2™2 —n > 0 and 0 € [0, 27). Since

ok ok ok -
0< li A, €9)?
| e g e =1 gk pame — )
ok ok ok
= lim Ami)?

koo 2k 4 2m2 2k 4 9m2 1 2k 4 9m2 _p
< lim (Am,)? =0,

T k—oo

the function fp,, m,.0 belongs to By by Theorem 1 of [21]. Moreover,

2k‘ 2k 2k ' .
)\m 10\2
225 2k 4 2m2 2k 4 9m2 ] 2k+2m2,n( e”)
Am 2k2k ok 9k
g Ooms) .,

ren 28 4 2mz 2k 4 oma 1 9k L gma _p =

The proof of Theorem 1 in [21] shows that there exists a positive constant M
such that || fom, ms..0lls < M for all my, ma € N such that 2™ —n > 0 and
0 € [0,27). Define g, my.0 = frni,ma,0/M. Then the sequence {gm, m,,0 =1
is contained in the closed unit ball of By. Moreover, gm, m,,0 tends to zero
uniformly on compact subsets of D for every m; and 6 as my — oo, and
therefore gm, m,,0 tends to zero weakly as my — oo by Lemma 2.3. It follows
that for any compact operator T : B — Hz.,

HcapDn - THB—)H%(
lim sup sup [[(Co D™ = T)(Grny,ms,0) | 2.

ma—00 mq,0

> lim sup sup HC D" (gml ma, 9)||H2 — lim sup sup ||T(gm1 ma, 9>HH2

m2—00 mq,0 ma—00 mq,0

= limsup sup [|Cy D" (gmy,ms,0) || m2 -

mg—00 my,0

Y

V

Therefore, from the definition of the essential norm, we get
ICoD™ 12 5y 2. = = inf ||C’¢D” =Tl
1 n+1) 2
v %ﬁfﬂ%iﬁg R |a|2 / o 0 (0 (2)) Pl (2)Pg(2, a)dA(z).
Given € > 0, there exists an N € N such that

n |a’|2 n+1
M|CoD |2 sz + 2 K KA (a7 [, e o (g (2 a)dAG)
for all a, 8 and m; when my > N. Let a € D be fixed. Integrating with respect
to 8, using Fubini’s theorem and Parseval’s formula, we obtain
21 (M?||Co D™ |I2 5, 2 +€)
1—|a 2 n+1
>t [T setenPante < otz )

K(1-1a]?)
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]' B |a’| M2 R n ki k_q]?
= |a|2 /|50 |2(2 - )/ ‘ g ok(n+1) 2 G(Amﬂo(z))Q L ae
k=1

x |<P (2)Pg(z, a)dA(z)
1—lal?
K(1—a?)

mat+l_o, > n k_
x / (=) 20 (3 22 x, o(2) PR D) [ (2) Py (2, a)dA(2).
k=1
By the formula (3.8) in [10], there exists a positive constant C' such that

> C
22k(n+1) |)\m1§0(2)|2(2k_1) >
; (1 = |Am, p(2)[2)2(v D)
for all z € D with |p(2)| > 1/2. Thus by Fatou’s Lemma, we get

QW(MQHC DnHe BoH2 T £)

—laf T o' ()12
> o' (=
~ %Iln_lgg K |a| | (1,Mm1¢(z)|2)2<n+1)g(z,a)dA(z)
|a’|2 mo+l_on ()2
z K 1_ |a| |<P )2 %g(z,a}d/ﬂz)
1 - |a|2 2m2+1 | (Z)
Z (1 |a| /|SD | = M;,(Dz)‘ )2(n+1)g(2,a)dA(Z).

Since a € D was arbitrary, we obtain that
2m(M?||C, DnHe Bz T E)

vV

1 — laf? ¢ (2) g z.0)
= limsupsup ————— / eIt S dA(z)
€ mo—o0 a€D K(l - |a‘|2) {le(z)|>1—2—(m2+1)} (1=l (z)[%)2v+D)

1 1-— |a’|2 Lo’ (2)|%g(z,a
= —hmsupsupi/ @—QZMdA( )
€ r—1 aeb K(l — |a|2) {le(2)|>r} (1-le(2)1?) (n+1)

for all € > 0. Therefore
ICe D" |52 2 VA.
A similar argument in the proof above shows that
ICe D lesnz 2 VB, 1CoD e posmz Z VU.
Next we prove that
ICo D" le.p—r2. S VA.
For j € N, define K;(f) = Ky, (f), where ¢;(2) = L&, ie., K;f(z) =

f(5452), z € D. Since the operator K; is compact on B for all j € N (see

[9]), and C, D™ : B — H% is bounded, it follows that
ICe D2 sz, < ICoD™ = CoD" Kl g2 = |CoD™(Id = Kj) 5, 2,
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~ ﬂ E_ foqpy) (D) 22'z2za z
~ s swp s [ [ = so ) e I Ot A

(F ~ F o) (o) I/ () Poz, a)dA(:)

- 1—|af? /
< sup SUp ————+
Iflls<1aed K (1 = la?) Jyee) <

— 7o) ()] ¢/ (2) gz, a)dA(2)

+ p o / (f
sSup Sup —————

Iflls<1aed K (L —al?) Jyee)>r
=I5 +1

for all r € (0,1) and 7 € N, where Id(f) = f and

(f = F o) ()| I¢ () Poz, a)dAC:)

s 1—|af? /

1= Ssup SUp ————>+
Ifls<1aed K (1 —al?) /o)<

and

(f = F o) (el ¢/ (2) oz a)dA:).

I L — af” /
5= Sup Sup-—————
Ifls<1aed K (1 —al?) Jip)>r

Since C, D™ : B — H% is bounded, from the proof of Theorem 2.1 we see that
¢ € H%, and hence

7 1_|a|2 / / 2
K=sup——— O (2)|79(z,a)dA(z) < oo.
SUD T ) Dl (2)"g(z, a)dA(z)

Since f — f o1); and its derivative tend to zero uniformly in a compact subset
of D as j — o0, it follows that

I < Klimsup sup sup |[(f—fo wj)(”+1)(<p(z))|2 =0.
J=oo |IfllB<1{le(2)|<r}

Now we estimate I5. Since

(5) If = fotills <|flls+I1fodsls <2l flls <2
by Lemma 2.2 we get

1—laf? ¥ (2)[?
I < —_ dA(z).
¢ ST oy T T PR A)
Consequently,
||C¢Dn||i,l’5‘—>H§<

< limsup ||C,D" — CwD"Kj||2B_>H§( < limsup I; + limsup I
J—0o0

j—o0 Jj—oo

1—|al? / ¢’ (2)]?
S SUp 9(2,a)dA(z)
aed K (1 —1al?) J{joe) sy (1= l@(2)]?2)2(0+D)

for all 7 € (0,1). Thus [[Co D" ||e, 52 < VA. A similar argument shows that
ICD"2 5,z S VE.
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Finally we prove that |CoD"|[c sm2 < VU. By Lemma 2.1 we have
IC, D"(Idf Kj)flIs

2
~ sup o o R RGO IO RN ERED

1cop K

1
< - (+1) (o 1—|z2)dA
= fcon K(III)/um{wzngr} (= Fovs) ‘ Q- 2)dA)

+ sup (f = Fous) ™ ()] ¢ ()P~ [2P)dA(2)

e
1cop K(|11) Jstmogie)1>r)
for any r € (0,1). By Lemma 2.2 and (5) we obtain

1
Sup ——— (f = forp)) ™ (p ' (2) (1 = |2]*)dA(z)
rcon K(|11) Js(nnile()>r) ‘

1 ¢’ (2)I?

S S T (1— |21%)dA(2)
rcon K(I11) Jsynqie)sn (1= lp(2)[2)20HD)

for any r € (0,1) and f € B with ||f||z < 1. Now we only need to prove that

(f = o) ()| ¢ ()P~ 2)dA) - 0

.
Sup Sup ———
Ifis<trcop K1) Jsnnqiee)<ry

as j — co. We put v = ¢(z) and denote the radial segment by [ I 7v,v]. We
obtain that

7D ) - f<"+”<j+zv>} ]+1|v||f("+2)(€( v))l

for some &(v) € [jjﬁv,v]. An application of Cauchy’s estimate on the circle
with center at {(v) and radius R € (0,1 — r) shows that

(n+2)!
R e | £(O)]-
From the last two inequalities and the fact that ¢ € H%, we get
1 / 1 2
sup (F = Fou) " D (p(2))
Iflls<t reon K(]) DN{le(2)|<r} !
x | (2)[*(1 = |2*)dA(2)
21 2,2
< ((n +2))7r (log
R2nH4(j + 1)2
as j — oo. Thus, we have
ICoD™ 12 5y g2, < 11m1nf||C’ D" — CoD"Kjllf 2

|fH(E))] <

2
2 0
17(R+7’)) ||(10||HK —

= liminf sup |C,D"(Id— K)f||H2

J=ee | flls<1

1 CEE e
/ (11— [2[2)dA(2)

/S sup K(|I|) 1— 2)2(n+1
ICoD (DHN{|e(z)|>7r} ( lp(2)[?)
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for any r € (0,1). Letting r — 1, we obtain that |C,D" |, s m2 < VU. The
proof is completed. O

From Theorem 2.2, we immediately get the following result.

Theorem 2.3. Let ¢ be an analytic self-map of D,n € Z and K satisfy the con-
ditions in (2). Suppose that C,D" : B — H% is bounded. Then the following
statements are equivalent.

(a) C,D™ : B— H% is compact;

(b)

: 1 —|a? / ¢ (2)]?
limsupsup ————— z,a)dA(z) = 0;
PP K aP) Jyooion (= Te@Ppen? 5 OAE)

(c)

i 1~ |a)” ()| ,
lim sup sup 7/ (1 —|oa(2)]?)dA(2) = 0;
r1 - aed K (1= 1al?) Jqpysr (1= l@(2)[2)2004D)

(d)

lim sup sup #/ |‘P/(Z)2|22( (1~ |2[2)dA(z) = 0.
r—1 1cop K(1) Jsnge)sry (1= lp(2)[2)2n+D

3. Characterization of the operator C,D™ : DY — Hﬁ

In this section, we study the boundedness, compactness and the essential
norm of the operator C,D" : D, — H#%. Hence, we first state some lemmas
which will be used in the proofs of the main results in this section. The following
result is Luecking’s characterization of Carleson measure in terms of functions
in the Dirichlet type spaces (see [11]). In comparison with the original result,
™ has been replaced by f("*1) since this appears to be convenient for the
purposes of the paper.

Lemma 3.1 ([11]). Let p be a positive measure on D, 0 < p < 2 and —1 <
a < oo. Then i is a bounded @ + 2n-Carleson measure if and only if there

is a positive constant C, depending only on «,p and n such that

/D £ () Pd(z) < Ol 13

or all f € D2. Moreover, if u is a bounded 2(2+a) + 2n-Carleson measure, then
o P

C = C1Cy, where Cy > 0 depends only on a,p and n and

S
Co :sup%.

Lo
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It is well-known that the bounded ¢-Carleson measure can be characterized
by a global integral condition (see [1]), namely,

S(I))
(6) supu( (t) /A sup /|ab )'du(z), 0 <t < oco.
r beb

The following lemma is a partial boundary version of this result.

Lemma 3.2 ([12]). Let 0 < r < 1,1 <t < oo and let 1 be a positive Borel
measure on D. Then

sup
I [1]t ~ oi>rJo

where A(0,r) :={z: |z] <r}.

M(S(I)\A(O,T)) < /|01/7(Z)|td,u(z)

Lemma 3.3 ([2]). Let g and u be positive measurable functions on D, and let
p € S(). Then

[ a0 0@l @)PuAR) = [ o). wdae)

D
where U(p,w) =3, -1y u(2) for w € D\{p(0)}.

For an analytic function f(z =Y e arz’ in D, define

Zakz JRif(z Z apz"

k=j+1
Lemma 3.4. Let 1 < p < oco,n € Z and —1 < a < co. For each w € D,
positive integer j and f € DP,
F(a+2+mn)
[(a+2)

where I' denotes the Gamma function.

Proof. Since R;f € D, then R;_1f" = (R;f) € AP, we have

(R Y (w) = / (R Y (2) . (w)d A (2).
where K, (z) is the Bergman Kernel function. Thus

+2+n) z
Ry )™ (w / R; (a
( f J— 1f (O[ + 2) (1 — 2w)a+2+”
The orthogonality of monomials 27 with respect to dA, shows

/ i-1/'(2) Ia+2) (1—2w)a+2+nd’4a(z)

- fretern (Y

F(k+a+2+n)| .
KT (a +2+n)

3

(R ()"0 5 £l
k=j

n

dA,(z).
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By Holder inequality, we get
(B ) (w)

M(a+2+n) zZ"
< — 7 - - @
- T(a+2) /|f ((1—zw)0‘+2+”> ‘dAa(z)
D(a+2+n) —~ Tk+n+a+2) . .
"dA
CT(a+2) /lf w Z ET(n+ o+ 2) Wz dAa(2)
I(a+24n) X Tk+n+a+2) kk+)q ’
_ P " dAa
< SR | [ (k_z e e
F(a+2+n) = Tk+nt+a+?2),
P

Theorem 3.1. Let ¢ be an analytic self-map of D, 1 < p < 2,—-1 < a <
oo,n € Z. Assume that K satisfy the conditions in (2). Then the following
statements are equivalent.

(a) Cp, D™ : DP. — H? is bounded,

(b)
1-— |a|2 / 2(2+a)+2 , 9
su o " z,a)dA(z) < 00
s e [ et /(=) gz, a)dA(2)
©
sup ——12L / o4 (@2 ()P — [oa(2)PA(R) < oo
abepDK (1—1al?) 7 ¢

Proof. The proof of (a)&(c) is similar to (a)<(b). Hence we only prove
(a)&(b).
(b)=(a). Let f € D2. By Lemma 3.1, (6) and Lemma 3.3 we have

HCwD”fII?p zsupﬁ L1600 P i)

1-—
_ [ hed B (n+1 2d
= Ssup Ha
achD K(l |a’| / |f | ( )

1—|a|? s s(1) Ma(w)
< sup sup ~ sz || f1I7
aed K(1 —al?) 1| 2Et) 4on Da
1—|a|? / CN 9
A SUp ———— 5 Sup o dpg (w »
sup o sup | (o) ()1 g
1—|af? / 2(““)Hn 1oy(2 2
= su sup o P z z,a)dA(z »
sup 1o s [ ok [ (2)Pg(z,a)dA ()] g
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_ 17|a‘|2 / M-{-Qn / 2 dA 2
= S i e DI%(@(Z))I P ¥ (2)7g(2, a)dA(2) || Iz

where dpia(w) = Y- -1y 9(2,a)dA(w). Thus C,D" : D — H?- is bounded.
(a)=>(b). Assume that C,D" : D? — H3 is bounded. Let b € D. Set
11— b a2
= —_— d e D.
e = [ () Fdu =
Then || fy||pr = 1 for all b € D. Let ¢ € 0D be the center of arc I C 9D and
b= (1—[I]){ €D. Then

D2 4 n) (1— p2) 5 b

() = - —
b F(4J;2 ) (171)2) (;r )+n

and |f1§n+1)(z)| 2 % PR S(I). Thus
(1=Jp)) "

00 > [[Co D[Pl follpy = ICe D™ full s,

1 —af? / O
~ su z,a)dA
sup iy I 2)Pg(z a)dA(2)
2
— sup " / D (o(2) Pl (2) Pz, a)dA(2)
acD K(1_|a|
1- (n1)
= su w
a€5K<1—|a| / 5o Ha(w)
L—a? DO 4m) (@ — 25 b 2
_ du,
- LT =) 0 e )

zoup e [ ey da(w)
up —————~ — oo (w
aen K(L—af?) Jsqry (1 — |p)) 25 +2n
for all b € D. By (6) and Lemma 3.3 we have

00 > su —laf® sy dpa(w)
oeh K(1—lal?) 1 I |2(2+“)+2n

1—lal? / 2(2+a>+2n
R SUp —————— sup o d
e K (1 —al®) pep o pa(10)

1—|al? 2(2+a> "
= swp o o #2010 (2) g (2, a)dA(2).
aven K(1—[af2)
This completes the proof of this theorem. (I

Theorem 3.2. Let ¢ be an analytic self-map of D, 1 < p < 2,-1 < a <
oo,n € Z. Assume that K satisfy the conditions in (2). Suppose that C,D" :
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DP — H% is bounded. Then

1Co D" |le, D212 = VP = /Q.

Here
1— |a|? 2(2+C‘>4-2n 2
= hgllsgpsgg K= |a]P) |0b |l ( )7g(2,a)dA(z),
— a
1— |al? 2(2+a)+2n 2
Q —h‘r;Tstipsgg KA |aP) | ay(ep 0’ (2)P(1 = |oa(2)|*)dA(z).
— a

Proof. We only need to prove that |CoD"[|c pp_p2 =~ V/P. Since the proof
for |Cp D™ | pp— 12 = V/Q is similar.
First we prove that |Co.D"[|c.ppm2 2 VP. Let b€ D. Set
01— )%ﬂ
= — dw, z € D.
We have || fy||pr = 1 and f, — 0 uniformly on compact subsets of D as [b| — 1.

Since D?, is reflexive, we see that f, — 0 weakly in D? as |b] — 1. Thus
[J(fo)llzz. — 0 as [b] — 1 for every compact operator J : D — H?. Hence

ICoD" = Ty, > Hmsup [CD" () = T

> limsup ||C,, D"(fb)HH? _thUP||J(fb)||H2

b]—=1 [b]—=1

= lim sup HCg;Dn(fb)H?q?(
[b]—1

for every compact operator J : D — Hz. By (3) and Lemma 3.3 we have
limsup [|Cy D™ (f)II32

|b]—1

1 —|af? n)
limsupsup ——————~ / g(z,a)dA(z)
bj—1 aed K(1—lal?) I (g (=

Q

1o ("+1) 2
= limsupsup ———5¢ / f © g(z, a)dA(z
lb|—1 aeDK(1—|a| | 2))*1€(2)Pg(z, a)dA(2)

1- (n1)
= limsupsup ——— / I w
e = palte)

= lim sup sup
bj—1 aeD K(1—lal?)

1 |af? P22 ) (1 p2)5 b |2
/’ 4+2a BN CETS S dpia(w)
P

(1 —bw)
1—a|? 1
lim sup sup / — dpig (w)
bl—1 aen K(1—=lal?) Jsa) (1 - |b|)2(2+ 22t o

1—la|? 2(2+a> 5
limsupsup ——————— / o 2 an o(w)
bj—1 aeD K(1—lal?) o (w

Vv

Q
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=P
Therefore, from the definition of the essential norm, we obtain
1Co D2 gz, = inf [ CoD" — Tl gz 2 P
Next we prove that ||Co,. D" [|c prm2 < V/P. For an analytic function f(z) =
Yoo arz* in D, since T} is compact on DE, we have
1Co D" |le,pr 1z = [|Co D™ (T + Rj)lle,p2 - 12
S NCeD"Tjlle,pr s m2 + |Co D" Rjle pr s 12,
=[|CoD" Rj|e,pz - 12,
S |NCe D" Rjlpz s m2 -
Hence
|Co D™ ||e,pp s 2. < h}g}}.}f CoD" R;l|pr s b2, -
Therefore, by Lemma 3.3, we get

ICoD™I2 ps s 2. < lim inf ICoD" il Bn 112

A

liminf sup ||C<,,D"(ij)||§q§(

T fllpp <1

1. . f 1 _ |a|2
~ limin sup sup
3% | f||pp <1 aeb K (1 — laf?

1—|of?
(7) = hmlnf sup sup
3% | || pp <1aed K (1 = |af?

) / (R, F)™ 0 0)' () Pg(z, a)dA(2)

[ 1D @) ).

) Jo

Let r € (0,1). For each a € D and f € DE, by Lemma 3.4 we have
[ ) Pl

I(k+a+2+n) 2
S b *) d
~ ||f||Da /WST (k_J k'F(O[ 2 TL) |’LU| ) /j/a(w)

T(k+a+2+n) 42
< 1171 ( M) [ duaw)
k=j |w|<r

E'T(o + 2+ n)

Since ¢ € H%, by Lemma 3.3 we have

sup Ll [ dmatw) =s i [P
up ———— fia (W) = sUp ———— ¢'(2)*g(z,a)dA(z
aed K (1 —al?) Jju)<r aed K (1 —1al?) Jipe2y<r

~ ||C¢D”(z"+1)|@[§( < 0.
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It is well known that Y -, I,},’Hf:;_:%) TS (1_T)£+n+2 for any r € (0,1).

Hence

1 —af?
(8) liminf sup sup-————
3% | || pp <1aed K (1 —|af?)

/| DD ) ) = 0

We now estimate f|w|>r |(R; )™V (w)|>dpg (w). By Lemmas 3.1, 3.2 and 3.3
we obtain

/> (R /)"0 (w) Pdpa (w)

fS(I)\A(O,r) dpia(w)
224«
1) 5 e

2(2+a)
< |IR; 13 sup / o ()] 522 +20 4 (1)
[b|>r JD

() — ||R; f|%s sup / 03 (0(2)] 72 (2) g 2, a)dA(2).
b|>r JD

< |IR; £l sup

Using (7), (8) and (9), for any r € (0,1) we get

1C D" 12 bz 12

< limint s swp il [ 000 )
w|>r

709 | f]|pg <1a€D
N 1—|al? 2(2+a)
< liminf  sup ||ij|\%gsupﬁ sup/|0{,(gp(z))| 4o

I | fllpp <1 a€D b|>r JD

x| (2)Pg(z, a)dA(2)

1—1al? 2(24a)
<  sup ||f||2D§ supﬁ sup / ot (p(2))] 7 2 (2) 29 (2, a)dA(2).
I Fllpp <1 a€D |b|>rJD
Taking the limit as » — 1, we get the desired result. Thus we have
HCan”e,DgﬁHf{ ~VP.
The proof is complete. (I

From Theorem 3.2, we immediately get the following result.

Theorem 3.3. Let ¢ be an analytic self-map of D, 1 < p < 2,—-1 < a <
0o, € Z. Assume that K satisfy the conditions in (2). Suppose that C,D™ :
DP — H% is bounded. Then the following statements are equivalent.

(a) Cp,D™ : DP, — H? is compact;

(b)

1= lal? (2+a)
lim sup sup ——14__ / 0 (0(2)) 25420 (2) P 2, a)dA(:) =
bj—1 aed K(1—|al?)
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(©)

1—lal? (2+a)
lim sup sup ——14__ / 0 (0(2) 2522 ()P (1 — |ou(2)P)dA() =
bj—1 aeD K(1—lal?)
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