DOI QR코드

DOI QR Code

EXISTENCE OF INFINITELY MANY SOLUTIONS FOR A CLASS OF NONLOCAL PROBLEMS WITH DIRICHLET BOUNDARY CONDITION

  • Chaharlang, Moloud Makvand (Department of Pure Mathematics Faculty of Science Imam Khomeini International University) ;
  • Razani, Abdolrahman (Department of Pure Mathematics Faculty of Science Imam Khomeini International University)
  • Received : 2017.11.15
  • Accepted : 2018.10.15
  • Published : 2019.01.31

Abstract

In this article we are concerned with some non-local problems of Kirchhoff type with Dirichlet boundary condition in Orlicz-Sobolev spaces. A result of the existence of infinitely many solutions is established using variational methods and Ricceri's critical points principle modified by Bonanno.

Keywords

References

  1. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  2. A. Bensedik and M. Bouchekif, On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity, Math. Comput. Modelling 49 (2009), no. 5-6, 1089-1096. https://doi.org/10.1016/j.mcm.2008.07.032
  3. G. Bonanno and G. M. Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009), Art. ID 670675, 20 pp.
  4. G. Bonanno, G. M. Bisci, and V. Radulescu, Existence of three solutions for a nonhomogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Anal. 74 (2011), no. 14, 4785-4795. https://doi.org/10.1016/j.na.2011.04.049
  5. G. Bonanno, Quasilinear elliptic non-homogeneous Dirichlet problems through OrliczSobolev spaces, Nonlinear Anal. 75 (2012), no. 12, 4441-4456. https://doi.org/10.1016/j.na.2011.12.016
  6. F. Cammaroto and L. Vilasi, Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator, Nonlinear Anal. 74 (2011), no. 5, 1841-1852. https://doi.org/10.1016/j.na.2010.10.057
  7. F. Cammaroto and L. Vilasi, Multiple solutions for a nonhomogeneous Dirichlet problem in Orlicz-Sobolev spaces, Appl. Math. Comput. 218 (2012), no. 23, 11518-11527. https://doi.org/10.1016/j.amc.2012.05.039
  8. C. Chen, Y. Kuo, and T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations 250 (2011), no. 4, 1876-1908. https://doi.org/10.1016/j.jde.2010.11.017
  9. M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal. 30 (1997), no. 7, 4619-4627. https://doi.org/10.1016/S0362-546X(97)00169-7
  10. N. T. Chung, Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing nonlinearities, Complex Var. Elliptic Equ. 58 (2013), no. 12, 1637-1646. https://doi.org/10.1080/17476933.2012.701289
  11. Ph. Clement, B. dePagter, G. Sweers, and F. deThin, Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math. 1 (2004), no. 3, 241-267. https://doi.org/10.1007/s00009-004-0014-6
  12. Ph. Clement, M. Garcia-Huidobro, R. Manasevich, and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 11 (2000), no. 1, 33-62. https://doi.org/10.1007/s005260050002
  13. F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal. 74 (2011), no. 17, 5962-5974. https://doi.org/10.1016/j.na.2011.05.073
  14. F. J. S. A. Correa and G. M. Figueiredo, On a p-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Lett. 22 (2009), no. 6, 819-822. https://doi.org/10.1016/j.aml.2008.06.042
  15. G. Dai and R. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl. 359 (2009), no. 1, 275-284. https://doi.org/10.1016/j.jmaa.2009.05.031
  16. X. Fan, On nonlocal p(x)-Laplacian Dirichlet problems, Nonlinear Anal. 72 (2010), no. 7-8, 3314-3323. https://doi.org/10.1016/j.na.2009.12.012
  17. F. Fang and Z. Tan, Existence and multiplicity of solutions for a class of quasilinear elliptic equations: an Orlicz-Sobolev space setting, J. Math. Anal. Appl. 389 (2012), no. 1, 420-428. https://doi.org/10.1016/j.jmaa.2011.11.078
  18. S. Heidarkhani, G. Caristi, and M. Ferrara, Perturbed Kirchhoff-type Neumann problems in Orlicz-Sobolev spaces, Comput. Math. Appl. 71 (2016), no. 10, 2008-2019. https://doi.org/10.1016/j.camwa.2016.03.019
  19. G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
  20. A. J. Kurdila and M. Zabarankin, Convex Functional Analysis, Systems & Control: Foundations & Applications, Birkhauser Verlag, Basel, 2005.
  21. D. Liu, On a p-Kirchhoff equation via fountain theorem and dual fountain theorem, Nonlinear Anal. 72 (2010), no. 1, 302-308. https://doi.org/10.1016/j.na.2009.06.052
  22. T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. 63 (2005), 1967-1977. https://doi.org/10.1016/j.na.2005.03.021
  23. M. Mihailescu and V. Radulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2087-2111. https://doi.org/10.5802/aif.2407
  24. M. Mihailescu and D. Repovs, Multiple solutions for a nonlinear and non-homogeneous problem in Orlicz-Sobolev spaces, Appl. Math. Comput. 217 (2011), no. 14, 6624-6632. https://doi.org/10.1016/j.amc.2011.01.050
  25. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991.
  26. B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), no. 1-2, 401-410. https://doi.org/10.1016/S0377-0427(99)00269-1
  27. B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim. 46 (2010), no. 4, 543-549. https://doi.org/10.1007/s10898-009-9438-7
  28. J.-J. Sun and C.-L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal. 74 (2011), no. 4, 1212-1222. https://doi.org/10.1016/j.na.2010.09.061