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COEFFICIENT MULTIPLIERS ON DIRICHLET TYPE

SPACES

Dongxing Li, Hasi Wulan, and Ruhan Zhao

Abstract. We characterize coefficient multipliers from certain Dirichlet

type spaces to Hardy spaces and weighted Bergman spaces.

1. Introduction

Let D := {z ∈ C : |z| < 1} denote the unit disk, T := {ξ ∈ C : |ξ| = 1} be
the unit circle and Hol(D) denote the space of all analytic functions on D. If

f ∈ Hol(D), its sequence of Taylor coefficients is denoted by {f̂(n)}∞n=0.
If 0 < r < 1 and f is an analytic function in D, we set

(1.1) Mp(r, f) =

(
1

2π

∫ π

−π
|f(reiθ)|pdθ

) 1
p

, 0 < p <∞,

(1.2) M∞(r, f) = max
|z|=r

|f(z)|.

For 0 < p ≤ ∞, the Hardy space Hp consists of those functions f analytic in
D for which

(1.3) ‖f‖Hp = sup
0<r<1

Mp(r, f) <∞.

If 0 < p <∞ and α > −1, the weighted Bergman space Apα consists of those f
analytic on D such that

‖f‖p
Apα

:= (α+ 1)

∫
D
|f(z)|p(1− |z|2)αdA(z) <∞,

where dA(z) = dx dy/π is the normalized area measure on D. The unweighted
Bergman space Ap0 is simply denoted by Ap. By classical theorems, as in [16], the
weighted Bergman integral is equivalent to the appropriate weighted integral
of the derivative, which can be used to extend the concept of the weighted
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Bergman space to the more general case with −∞ < α <∞ as follows. For f
analytic on D, we say that f ∈ Apα if∫

D
|f (k)(z)|p(1− |z|2)kp+α dA(z) <∞

for any nonnegative integer k such that kp+ α > −1.
For α > −1, the weighted Dirichlet space Dpα consists of those f analytic on

D such that

‖f‖pDpα := (α+ 1)

∫
D
|f ′(z)|p(1− |z|2)αdA(z) <∞.

Note that weighted Dirichlet spaces are actually special cases of the above
general weighted Bergman spaces; that is, for α > −1, Dpα = Apα−p.

When α = 0, the unweighted Dirichlet space will be simply denoted by Dp.
For p = 2, D2

α is a Hilbert space, and we denote it simply by Dα. It is also
well-known that D1 = H2 (the Hardy space).

Let f(z) =
∑∞
n=0 anz

n and g =
∑∞
n=0 bnz

n be analytic functions on D. The
Hadamard product of f and g is defined by f ∗ g(z) =

∑∞
n=0 anbnz

n. It is easy
to check that f ∗ g has the following equivalent integral definition.

f ∗ g(r2eiθ) =
1

2π

∫ 2π

0

f(reit)g(rei(θ−t))dt.

Note that, if we let r = 1 and simplify the tangential function of f and g as
f(t) := f(eit) and g(θ− t) := g(ei(θ−t)), then the convolution of two boundary
functions can be reformulated as

f ∗ g(θ) =
1

2π

∫ 2π

0

f(t)g(θ − t)dt.

Their Fourier coefficients satisfy the relation (̂f ∗ g)(n) = f̂(n)ĝ(n).
Although we are mainly interested in spaces of analytic functions, it is conve-

nient to focus our attention on their Taylor coefficients. We will regard spaces
of analytic functions on the unit disk as sequence spaces by identifying a func-
tion with its sequence of Taylor coefficients. Without causing confusion, we will
use the same notation to denote this sequence space and its original function
space.

Let A and B be two vector spaces of sequences. A sequences λ = {λn} is said
to be a coefficient multiplier from A to B if {λnαn} ∈ B whenever {αn} ∈ A.
The set of all multipliers from A to B will be denoted by (A,B).

Let X and Y be spaces of analytic functions on D. A function g ∈ Hol(D) is
said to be a (Hadamard) coefficient multiplier from X to Y if f∗g ∈ Y whenever
f ∈ X. The set of all coefficient multipliers from X to Y is denoted by (X,Y ).
Since f ∗ g = g ∗ f , we know that Y ⊂ (X,Z) is equivalent to X ⊂ (Y,Z). For
X ⊂ Y ⊂ Z, it is obvious that the inclusion relation (Y, Z) ⊂ (X,Z) holds.
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We may also identify a space X of analytic functions on D with the sequence
space of Taylor coefficients of functions in X. In this way, we may talk about
multipliers between sequence spaces and spaces of analytic functions on D.

Coefficient multipliers were first studied in a series papers by Hardy, Lit-
tlewood and Paley (see, [4, 6, 9]), and later on have been extensively studied
by many authors. Most of the work are for coefficient multipliers between
Bergman spaces, Hardy spaces, or certain mixed normed spaces. See, for ex-
ample, [1–3, 7, 8, 10–12, 14] and [15]. We refer to [8] and the references therein
for a fairly complete account for this study. In this note we are interested in
studying coefficient multipliers involve weighted Dirichlet spaces.

The rest of the paper is organized as follows. In Section 2, we characterize
bounded fractional derivative operator from Dp to Hp. In Section 3, we char-
acterize the multiplier from Dpα to Aq and Hq with mean growth of function.

2. Fractional derivative operators from Dp to Hp

It is known that, the general weighted Bergman space A2
α (α > −1) is a

Hilbert space with the orthonormal basis (see, p. 56 in [16]){
en =

√
Γ(n+ 2 + α)

n!Γ(α+ 2)
zn, n ∈ N

}
,

and the norm of f in A2
α is given by

‖f‖A2
α

=

∞∑
n=0

Γ(n+ 2 + α)

n!Γ(α+ 2)
|f̂(n)|2.

By Stirling’s formula, ‖f‖A2
α

is comparable to

∞∑
n=0

|f̂(n)|2

(n+ 1)1+α
.

It easily follows that if α, β > −1, then {λn} ∈ (A2
α, A

2
β) if and only if {n

α−β
2 λn}

∈ l∞. Since Dα = A2
α−2, we immediately get that {λn} ∈ (Dα,Dβ) if and only

if {n
α−β

2 λn} ∈ l∞.

For an analytic function f(z) =
∑∞
n=0 f̂(n)zn on D and t ∈ R, define the

fractional derivative multiplier Dt as follows.

Dtf(z) =

∞∑
n=0

ntf̂(n)zn.

We also denote by DtX = {Dtf : f ∈ X} for any function space X. Similarly,
given a sequence {an} ∈ `p (0 < p ≤ ∞), we define

Dt{an} = {ntan}

and Dt`p = {Dt{an} : {an} ∈ `p}.
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From the above discussions, we have the following results (note here we
identify a space X of analytic functions with the sequence space of the Taylor
coefficients of functions in X).

Proposition 2.1. The following results holds.

(i) Let α, β > −1. Then (A2
α, A

2
β) = (Dα,Dβ) = D

β−α
2 l∞.

(ii) Let −1 < α ≤ 1. Then (Dα, H2) = (Dα,D1) = D
1−α
2 l∞.

(iii) Let α > −1. Then (H2, A2
α) = (D1,Dα+2) = D

1+α
2 l∞.

The following is the main result of this section.

Theorem 2.1. Let 1 ≤ p ≤ 2. The fractional derivative multiplier D1− 1
p is a

bounded operator from Dp to Hp.

Proof. For each complex number ζ with 0 ≤ Re ζ ≤ 1, we can define a linear
operator Tζ on holomorphic function space Hol(D) by

Tζf(z) =

∫ 1

0

f ′(rz)

(
log

1

r

)− ζ2
dr, z ∈ D.

For the case p = 1, by using Fubini’s theorem, we can easily obtain that

‖Tζf‖H1 =
1

2π

∫ 2π

0

|Tζf(eit)| dt

≤ 1

2π

∫ 2π

0

∫ 1

0

|f ′(reit)|
(

log
1

r

)−Re ζ
2

dr dt

≤ 1

2π

∫ 2π

0

∫ 1

0

|f ′(reit)| dr dt for Re ζ = 0.

Recall that dA(z) = r
2πdrdt. It is well known that (see, for example, Lemma

15 in [17]) there exists a constant C > 0 such that∫ 1

0

∫ 2π

0

|f ′(reit)|dtdr ≤ C
∫
D
|f ′(z)|dA(z).

That is, for each Re ζ = 0, the operator Tζ maps D1 boundedly into H1. Further
more, for Re ζ = 0, there exists a constant C > 0 such that for any f ∈ D1,

‖Tζf‖H1 ≤ C‖f‖D1 .

Next, we consider the case p = 2. For an analytic function f(z) =
∑∞
n=0 anz

n,
changing variables twice we get that

Tζf(z) =

∫ 1

0

f ′(rz)

(
log

1

r

)− ζ2
dr

=

∞∑
n=0

(n+ 1)an+1z
n

∫ 1

0

rn
(

log
1

r

)− ζ2
dr
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=

∞∑
n=0

(n+ 1)an+1z
n

∫ ∞
0

e−(n+1)xx−
ζ
2 dx

=

∞∑
n=0

(n+ 1)
ζ
2 an+1z

n

∫ ∞
0

e−yy−
ζ
2 dy

=

∞∑
n=0

Γ

(
1− ζ

2

)
(n+ 1)

ζ
2 an+1z

n.

By using the norm expression of H2 and D2 in terms of Taylor coefficients, we
obtain that

‖Tζf‖2H2 =

∣∣∣∣Γ(1− ζ

2

)∣∣∣∣2 ∞∑
n=0

(n+ 1)Re ζ |an+1|2

≤ C
∞∑
n=0

(n+ 1)|an+1|2 = C‖f‖2D2

for all f ∈ D2, Re ζ = 1.
We prove remaining cases by an interpolation argument. Assume that 1 <

p < 2, 1p + 1
q = 1 and θ = 2

q . We need to show that the operator Tθ maps

Dp into Hp. It suffices to show that there exists a constant C > 0 such that
‖Tθf‖Hp ≤ C‖f‖Dp for every analytic polynomials f . If we fix an analytic
polynomial, then Tθf is again another polynomial and

‖Tθf‖Hp = sup

{
1

2π

∫ 2π

0

Tθf(eit)g(eit)dt : ‖g‖Hq = 1

}
.

For θ ∈ [0, 1] and Banach spaces X0, X1, we denote by [X0, X1]θ the complex
interpolation space between X0 and X1. Since D1 = A1

−1,D2 = A2
−2,Dp =

Ap−p, and by Theorem 36 in [16], [A1
−1, A

2
−2]θ = Ap−p for some θ ∈ [0, 1]

satisfying 1
p = 1−θ

1 + θ
2 . We get that [D1,D2]θ = Dp for some θ ∈ [0, 1]

satisfying 1 − θ
2 = 1

p , or θ = 2
q . Thus there exist a family of functions

fζ(z), (z ∈ D, 0 ≤ Re ζ ≤ 1) such that fθ = f , fζ ∈ D1 for Re ζ = 0 and
fζ ∈ D2 for Re ζ = 1. What is more,

max

{
sup

Re ζ=0
‖fζ‖D1 , sup

Re ζ=1
‖fζ‖D2

}
≤ C1‖f‖Dp ,

where C1 is a positive constant independent of f.
Let g ∈ Hq such that ‖g‖Hq = 1. We define a function

F (ζ) =
1

2π

∫ 2π

0

Tζfζ(e
it)g(eit)|g(eit)|

qζ−2
2 dt.

It is clear that F (ζ) is analytic for 0 < Re ζ < 1, continuous and bounded for
0 ≤ Re ζ ≤ 1.
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For θ = 2
q , from previous calculation we know that

(2.1) zTθf(z) = Γ

(
1− θ

2

) ∞∑
n=0

(n+ 1)
θ
2 an+1z

n+1 = Γ(p−1)D1− 1
p f(z).

Since fθ = f, we have that

(2.2) F (θ) =
1

2π

∫ 2π

0

Tθfθ(e
it)g(eit) dt = 〈Tθfθ, g〉 = 〈Tθf, g〉.

By the Hadamard three circle theorem, we obtain that

|F (θ)| ≤M1−θ
0 Mθ

1 ,

where M0 = sup
Re ζ=0

|F (ζ)| and M1 = sup
Re ζ=1

|F (ζ)|. Using Fubini’s theorem and

Hölder’s inequality, there is a constant C1 > 0 such that

M0 = sup
Re ζ=0

∣∣∣∣ 1

2π

∫ 2π

0

Tζfζ(e
it)g(eit)|g(eit)|

qζ−2
2 dt

∣∣∣∣
≤ sup

Re ζ=0

1

2π

∫ 2π

0

|Tζfζ(eit)| dt

≤ C1 sup
Re ζ=0

‖fζ‖D1

≤ C1‖f‖Dp .

Using the Cauchy-Schwartz inequality and Hölder’s inequality, there is a con-
stant C2 > 0 such that

M1 ≤ sup
Re ζ=1

1

2π

∫ 2π

0

|Tζfζ(eit)| · |g(eit)|
q
2 dt

≤ sup
Re ζ=1

(
1

2π

∫ 2π

0

|Tζfζ(eit)|2 dt
) 1

2
(

1

2π

∫ 2π

0

|g(eit)|q dt
) 1

2

≤ C2 sup
Re ζ=1

‖fζ‖D2

≤ C2‖f‖Dp .

Therefore there is a constant C > 0 such that

|F (θ)| ≤ C‖f‖Dp .

It follows from (2.2) that

‖Tθf‖Hp ≤ C‖f‖Dp ,

and so Tθf ∈ Hp. The boundedness of D1− 1
p now follows from (2.1). �

It is well known that the dual space of Hp can be identified with Hq under
the pairing 〈f, g〉 =

∑∞
n=0 anbn, and the dual space of Dp can be identified

with Dq under the pairing 〈f, g〉 =
∑∞
n=1 nanbn, where f and g are given
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by f(z) =
∑∞
n=0 anz

n, g(z) =
∑∞
n=0 bnz

n. From these duality results and
Theorem 2.1, we easily obtain the following results.

Corollary 2.1. For each 2 ≤ p <∞, the operator D
1
p−1 is bounded from Hp

to Dp.

The following results are consequence of Theorem 2.1 and Corollary 2.1.

Corollary 2.2. The following result hold.

(i) If 1 < p ≤ 2, 1
p+ 1

q = 1 and f(z) =
∑∞
n=0 anz

n ∈ Dp, then
∑∞
n=1 n|an|q

<∞.
(ii) If 1 < p ≤ 2, 1p + 1

q = 1 and
∑∞
n=1 n|an|p <∞, then f(z) =

∞∑
n=0

anz
n ∈

Dq.
(iii) If 1 ≤ p ≤ 2 and f(z) =

∑∞
n=0 anz

n ∈ Dp, then
∑∞
n=1 n

2p−3|an|p <∞.
(iv) If 2 ≤ p < ∞ and

∑∞
n=1 n

2p−3|an|p < ∞, then f(z) =
∑∞
n=0 anz

n ∈
Dp.

Proof. (i) Let 1 < p ≤ 2. By Theorem 2.1, if

f(z) =

∞∑
n=0

anz
n ∈ Dp,

then

D1− 1
p f(z) =

∞∑
n=0

n
1
q anz

n ∈ Hp.

By Theorem 6.1 in [4], this implies that {n
1
q an} ∈ lq, i.e.,

∞∑
n=1

n|an|q <∞.

(ii) Let 1 < p ≤ 2. By Theorem 6.1 in [4] we know that if {n
1
p an} ∈ `p, then

f(z) =

∞∑
n=0

n
1
p anz

n ∈ Hq.

By Corollary 2.1, we get that

D−
1
p f(z) =

∞∑
n=0

anz
n ∈ Dq.

(iii) Let 1 ≤ p ≤ 2. By Theorem 2.1, if

f(z) =

∞∑
n=0

anz
n ∈ Dp,

then

D1− 1
p f(z) =

∞∑
n=0

n1−
1
p anz

n ∈ Hp.
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By Theorem 6.2 in [4] we get that
∞∑
n=0

np−2
∣∣∣n1− 1

p an

∣∣∣p =

∞∑
n=0

n2p−3|an|p <∞.

(iv) Let 2 ≤ p <∞. From the given condition we have
∞∑
n=0

np−2
[
n1−

1
p |an|

]p
=

∞∑
n=1

n2p−3|an|p <∞.

By Theorem 6.3 in [4] we get that

f(z) =

∞∑
n=0

n1−
1
p anz

n ∈ Hp.

By Corollary 2.1 we get that

D
1
p−1f(z) =

∞∑
n=0

anz
n ∈ Dp.

The proof is complete. �

3. Multipliers with mean growth property

In this section we use the mean growth property of functions to characterize
the coefficient multipliers from Dp

α to Aqβ and Hq. We need some Lemmas.

Lemma 3.1 ([13, p. 73]). If f ∈ Hp, then Mq(r, f) ≤ (1− r)
1
q−

1
pMp(r, f) for

p ≤ q.

Lemma 3.2 ([4, Theorem 5.6]). Let f be analytic on D and suppose that
α > −1, 0 < q <∞ and 0 < p ≤ ∞. Then∫ 1

0

(1− r)αMq
p (r, f)dr <

∫ 1

0

(1− r)α+qMq
p (r, f ′)dr <∞.

Lemma 3.3 ([4, Chapter 4]). For α > 1 and 0 < r < 1 we have∫ 2π

0

|1− reit|−αdt = O((1− r)−α+1).

Lemma 3.4 ([15, Theorem 2.1]). If 0 < p ≤ s < ∞, 0 < q ≤ λ < ∞,
0 < α <∞, then(∫ 1

0

(1− r)λ(α+
1
p−

1
s )−1Mλ

s (r, f) dr

) 1
λ

≤ C
(∫ 1

0

(1− r)qα−1Mq
p (r, f) dr

) 1
q

.

Lemma 3.5 ([15, Theorem 2.3]). Suppose that 0 < q ≤ ∞, s = min{1, q},
0 < r < 1, and f, g are analytic on D then h = g ∗ f satisfies that

r2mMq(r
4, h(m)) ≤ C(1− r)

s−1
s Ms(r, f)Mq(r, g

(m)),

where m is a positive integer.
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Here is the main result of this section.

Theorem 3.1. Let 0 < p ≤ 1, p ≤ q < ∞, α, β > −1, and m = [α+1
p − 1].

Then

(i) (Dpα, A
q
β) :=

{
g : Mq(r, g

(m)) = O
(

(1− r)
α+2
p −

1+β
q −(m+2)

)}
.

(ii) (Dpα, Hq) :=
{
g : Mq(r, g

(m)) = O
(

(1− r)
α+2
p −(m+2)

)}
.

Proof. (i) Let s = min{1, q}. Suppose that

Mq(r, g
(m)) = O

(
(1− r)

α+2
p −

1+β
q −(m+2)

)
,

f ∈ Dpα and h = g ∗ f. Then by Lemma 3.5, we have that

r2mq(1− r)mq+βMq
q (r4, h(m)) ≤ C(1− r)(m+1− 1

s+q)+βMq
s (r, f)Mq

q (r, g(m))

≤ C(1− r)q(
α+1
p −1+

1
p−

1
s )−1Mq

s (r, f).

Since p ≤ s ≤ q, it follows from Lemma 3.4 and then Lemma 3.2 that∫ 1

0

(1− r)mq+βMq
q (r, h(m)) dr ≤ C

∫ 1

0

(1− r)q(
α+1
p −1+

1
p−

1
s )−1Mq

s (r, f) dr

≤ C
(∫ 1

0

(1− r)α−pMp
p (r, f) dr

) q
p

≤ C
(∫ 1

0

(1− r)αMp
p (r, f ′) dr

) q
p

<∞.

By successive application of Lemma 3.2, this implies that∫ 1

0

(1− r)βMq
q (r, h) dr <∞,

i.e., h ∈ Aqβ .

Conversely, suppose that g ∈ (Dpα, A
q
β). By the closed graph theorem, the

operator Hg : f 7→ h = g ∗ f is a bounded linear operator from Dpα to Aqβ . Let

f(z) = m!
zm

(1− z)m+1
=

∞∑
n=m

n!

(n−m+ 1)!
zn,

and ft(z) = f(tz) where 0 < t < 1. Then

f ′(z) = m!
zm−1(m+ z)

(1− z)m+2
.

A simple calculation shows that ft ∈ Dpα with

‖ft‖Dpα � (1− t2)
α+2
p −(m+2).

Since Hg : Dpα → Aqβ is a bounded operator, we have that

‖ht‖Aqβ ≤ C‖ft‖Dpα ≤ C(1− t2)
α+2
p −(m+2).
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On the other hand we have that

‖ht‖Aqβ ≥
(∫ 1

t

(1− r2)βMq
q (r, ht)dr

)1/q

≥ (1− t2)
1+β
q Mq(t, ht).

Hence, we get that

Mq(t, ht) = O
(

(1− t2)
α+2
p −

1+β
q −(m+2)

)
,

which implies that

Mq(t
2, h) = O

(
(1− t2)

α+2
p −

1+β
q −(m+2)

)
.

Setting t2 = r, and combining with the fact that h(z) = g ∗ f(z) = zmg(m)(z),
we have that

Mq(r, h) = Mq(r, z
mg(m)) = rmMq(r, g

(m)) �Mq(r, g
(m))

= O
(

(1− r)
α+2
p −

1+β
q −(m+2)

)
.

(ii) Let

Mq(r, g
(m)) = O

(
(1− r)

α+2
p −(m+2)

)
,

f ∈ Dpα and h = g ∗ f . Then, by Lemma 3.5, we have that

r2m(1− r)ms−1Ms
q (r4, h(m)) ≤ C(1− r)(m+1)s−2Ms

s (r, f)Ms
q (r, g(m))

≤ C(1− r)(
α+2
p )s−2−sMs

s (r, f).

Since p ≤ s, it follows from Lemma 3.4 and then Lemma 3.2 that∫ 1

0

(1− r)ms−1Ms
q (r, h(m)) dr ≤

∫ 1

0

(1− r)(
α+1
p + 1

p−
1
s )s−1Ms

s (r, f) dr

≤
(∫ 1

0

(1− r)α−pMp
p (r, f) dr

) s
p

≤
(∫ 1

0

(1− r)αMp
p (r, f ′) dr

) s
p

<∞.

By successive application of Lemma 3.2, this implies that∫ 1

0

(1− r)s−1Ms
q (r, h′)dr <∞.

Since 0 < s ≤ 1, it follows from Theorem 5 of [5] that h ∈ Hq.

Conversely, by taking the test function as f(z) = m!zm

(1−z)m+1 and using the

bounded property of Hg, we get that

Mq(t
2, h) = Mq(t, ht) ≤ ‖ht‖Hq ≤ C‖ft‖Dpα = O

(
(1− t2)

α+2
p −(m+2)

)
.

Setting t2 = r and combining with h(z) = g ∗ f(z) = zmg(m)(z), we have that

Mq(r, g
(m)) = O

(
(1− r)

α+2
p −(m+2)

)
.
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The proof is complete. �
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[8] M. Jevtić, D. Vukotić, and M. Arsenović, Taylor coefficients and coefficient multipliers
of Hardy and Bergman-type spaces, RSME Springer Series, 2, Springer, Cham, 2016.

[9] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series
(II), Proc. London Math. Soc. (2) 42 (1936), no. 1, 52–89.

[10] Z. Lou, Coefficient multipliers of Bergman spaces Ap. II, Canad. Math. Bull. 40 (1997),

no. 4, 475–487.
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[13] M. Pavlović, Introduction to Function Spaces on the Disk, Posebna Izdanja, 20,
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