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FREDHOLM TOEPLITZ OPERATORS

ON THE DIRICHLET SPACES OF THE POLYDISK

Kyunguk Na

Abstract. We study the Toeplitz operators on the holomorphic and

pluriharmonic Dirichlet spaces of the polydisk in terms of when Toeplitz
operator is Fredholm operator there. Consequently, we describe the es-

sential spectrum of Toeplitz operators.

1. Introduction

Let D be the unit disk in the complex plane C. For a fixed integer n, the
unit polydisk Dn of Cn is the cartesian product of n copies of D and V = Vn
is the Lebesgue volume measure on Dn normalized so that V (Dn) = 1.

The Sobolev space S is the completion of the space C1(Dn) for which

‖f‖ =

{∣∣∣∣∫
Dn

f dV

∣∣∣∣2 +

∫
Dn

{|Rf(z)|2 + |R̃f(z)|2} dV (z)

}1/2

<∞,

where

Rf(z) =

n∑
i=1

zi
∂f

∂zi
(z), R̃f(z) =

n∑
i=1

zi
∂f

∂zi
(z)

for z = (z1, . . . , zn) ∈ Dn. Then S is a Hilbert space with the inner product

〈f, g〉 =

∫
Dn

f dV

∫
Dn

g dV +

∫
Dn

{RfRg + R̃fR̃g} dV.(1)

The Dirichlet space D is the subspace of S consisting of all holomorhpic
functions. And the pluriharmonic Dirichlet space Dph is the space of all pluri-
harmonic functions f in S. Note that f ∈ C2(Dn) is a pluriharmonic if and
only if the function ϕa,b : C→ Dn defined by ϕa,b(λ) = f(a+ λb) is harmonic
for each a ∈ Dn and b ∈ Cn. Thus Dph is also a closed subspace of S.
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We put

L1,∞ =

{
ϕ ∈ S : ϕ,

∂ϕ

∂zj
,
∂ϕ

∂z̄j
∈ L∞, j = 1, . . . , n

}
,

where the derivatives are taken in the sense of distributions. Sobolev’s em-
bedding theorem ([1], Theorem 5.4) shows that each function in L1,∞ can be
extended to a continuous function on the closed polydisk Dn. Hence we will
use the same notation between a function in L1,∞ and its continuous extension
to Dn. Note that Rϕ, R̃ϕ ∈ L∞.

Let P and Q be the Hilbert space orthogonal projections from S onto D and
Dph, respectively. Given a function u ∈ L1,∞, the Toeplitz operators Tu on D
and T phu on Dph with symbol u are defined by

Tuf = P (uf), T phu ϕ = Q(uϕ)

for f ∈ D and ϕ ∈ Dph, respectively. Then Tu on D and T phu on Dph are
bounded linear operators.

On the Bergman space of the ball, McDonald ([8]) studied the Fredholm
properties of a Toeplitz operators and Cao ([2]) considered the same problem
on the holomorphic Dirichlet space. Also Lee ([5] and [6]) characterized the
Fredholm Toeplitz operators on the holomorphic and pluriharmonic Dirichlet
spaces of the ball. In this paper, we deal with the same problem of when a
Toeplitz operator is to be Fredholm operator on the holomorphic and plurihar-
monic Dirichlet spaces of the polydisk. Now we introduce our main theorems.

Theorem 1.1. Let u ∈ L1,∞. Then Tu is Fredholm on D if and only if u has
no zero on ∂Dn.

Theorem 1.2. Let u ∈ L1,∞. Then T phu is Fredholm on Dph if and only if u
has no zero on ∂Dn.

2. Preliminaries

For any multi-index α = (α1, . . . , αn) where each αk is a nonnegative integer,
we will write |α| = α1 + · · ·+ αn and α! = α1! · · ·αn!. We will also write

zα = zα1
1 · · · zαn

n

for z = (z1, . . . , zn) ∈ Dn.
Let A2 be the well known Bergman space consisting of all holomorphic func-

tions in L2 where L2 = L2(Dn, V ) denotes the usual Lebesgue space on Dn.
Note that D ⊂ A2 and moreover

||f ||22 ≤ ‖Rf‖22 ≤ ‖f‖2(2)

holds for all f ∈ D. Throughout the paper, we use the notations

||ϕ||2 =

(∫
Dn

|ϕ|2 dV
) 1

2

and 〈ϕ,ψ〉2 =

∫
Dn

ϕψ dV

for ϕ,ψ ∈ L2.
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Note that each point evaluation is a bounded linear functional on A2: see
Chapter 2 of [10] for details and related facts. Thus each point evaluation is
a bounded linear functional on D and Dph either. For each z ∈ Dn, it follows
that there exists a unique kernel functions Kz ∈ D and Rz ∈ Dph which have
the reproducing property:

f(z) = 〈f,Kz〉 and ϕ(z) = 〈ϕ,Rz〉

for f ∈ D and ϕ ∈ Dph, respectively.
As is well known, a real valued function on Dn is pluriharmonic if and only

if it is the real part of a holomorphic function on Dn. Hence we can express
Dph = D +D and

Rz = Kz +Kz − 1;

see Chapter 4 of [9]. From this, we obtain the relation between P and Q as
follows:

Q(ϕ) = P (ϕ) + P (ϕ)− P (ϕ)(0)(3)

for ϕ ∈ S.
Let B be the well known Bergman projection which is the orthogonal pro-

jection from L2 onto A2 and its explicit formula can be written as

Bψ(z) =

∫
Dn

ψ(w)Bz(w) dV (w), z ∈ Dn

for ψ ∈ L2. Here Bz is the Bergman kernel given by

Bz(w) =

n∏
i=1

1

(1− ziwi)2
, w ∈ Dn.

Since
n∏
i=1

1

(1− ziwi)2
=

n∏
i=1

∞∑
αi=0

(1 + αi)(ziwi)
αi =

∑
|α|≥0

n∏
i=1

(1 + αi)z
αwα

for z, w ∈ Dn, we have

Bψ(z) =
∑
|α|≥0

n∏
i=1

(1 + αi)z
α

∫
Dn

wαψ(w) dV (w)(4)

for z ∈ Dn. On the other hand, since∫
D

|λβ |2 dV1(λ) =
1

β + 1

for every integer β ≥ 0, one can see

||zα||2 = |α|2
n∏
i=1

1

αi + 1
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for each multi-index α. Note that the set {zα : |α| ≥ 0} spans a dense subset
of D. Thus it can be easily seen that the reproducing kernel Kz on D has the
following explicit formula

Kz(w) = 1 +
∑
|α|>0

∏n
i=1(1 + αi)

|α|2
zαwα(5)

for z, w ∈ Dn. Since Kz(0) = 1 for all z ∈ Dn, it follows from (5) that

Pψ(z) =

∫
Dn

ψ dV +
∑
|α|>0

∏n
i=1(1 + αi)

|α|
zα
∫
Dn

wαRψ(w) dV (w)(6)

for z ∈ Dn. Thus, for ψ ∈ S, we have by (4),

R(Pψ)(z) =
∑
|α|>0

n∏
i=1

(1 + αi)z
α

∫
Dn

wαRψ(w) dV (w)

= B(Rψ)(z)−B(Rψ)(0), z ∈ Dn.

(7)

Note that the following mean value property holds for holomorphic functions
f ∈ L1:

f(z) =

∫
Dn

f |bz|2 dV, z ∈ Dn,(8)

where ba denotes the normalized Bergman kernel of A2 defined by

ba(z) =
Ba(z)

‖Ba‖2
=

(1− |a1|2) · · · (1− |an|2)

(1− a1z1)2 · · · (1− anzn)2
.

Since f2 is holomorphic, we have by (8)

f(z)2 =

∫
Dn

f2|bz|2 dV, z ∈ Dn.

Taking the modulus on both sides, we obtain

|f(z)|2 ≤
∫
Dn

|f |2|bz|2 dV,

so that

|f(0)|2 ≤
∫
Dn

|f |2 dV = ‖f‖22

for all holomorphic f ∈ L1; see [3] for details. Combining this with (2), we
have the useful estimation as follows:

|f(0)| ≤ ‖f‖2 ≤ ‖Rf‖2 ≤ ‖f‖.(9)
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3. Fredholm Toeplitz operators

For each a ∈ Dn, we let Ea = RKa. Then the explicit formula of Ea is

Ea(z) =
∑
|α|>0

∏n
i=1(1 + αi)

|α|
aαzα.

Note that ‖Rea‖2 = ‖ea‖ = 1 for all a ∈ Dn where

ea(z) =
Ea(z)

‖Ea‖
, a, z ∈ Dn.

Since ‖Ba‖2 =
∏n
i=1(1 − |ai|2)−1 and ‖Ea‖2 = Ba(a) − 1 for all a ∈ Dn, we

have

lim
a→∂Dn

‖Ba‖2
‖Ea‖

= lim
a→∂Dn

1√
1− (1− |a1|2)2 · · · (1− |an|2)2

= 1.(10)

The following results are taken from [7].

Lemma 3.1. ea converges weakly to 0 in D as a→ ∂Dn.

Lemma 3.2. The identity operator from D into A2 is compact. In particular,
if a sequence fk converging weakly to 0 in D, then ‖fk‖2 → 0 as k →∞.

Let b2 = A2 + A2 be the pluriharmonic Bergman space consisting of all
pluriharmonic functions in L2. Let ϕ = f + g ∈ Dph for some f, g ∈ D with
f(0) = 0. Since ‖ϕ‖2 = ‖f‖2 + ‖g‖2, we have by (2)

‖ϕ‖2 ≤ ‖f‖2 + ‖g‖2 ≤ ‖f‖+ ‖g‖ ≤ 2‖ϕ‖.
Using this with Lemma 3.2, we can see that the identity operator from Dph
into b2 is bounded.

Recall that Dph = D0 +D where D0 = {f ∈ D : f(0) = 0}.

Proposition 3.3. Let ϕj = fj + gj ∈ D0 + D be a sequence. If ϕj converges
to 0 weakly in Dph, then fj and gj converge to 0 weakly in D.

Proof. Let h ∈ D. Since fj(0) = 0, we have

〈fj , h〉 = 〈ϕj − gj , h〉 = 〈ϕj , h〉 − h(0)gj(0) = 〈ϕj , h〉 − h(0)ϕj(0)

= 〈ϕj , h〉 − h(0)〈ϕj , 1〉

for each j. If ϕj → 0 weakly in Dph, then 〈ϕj , h〉 → 0 and 〈ϕj , 1〉 → 0 as
j →∞. Hence fj → 0 weakly in D. Also we have

〈gj , h〉 = 〈ϕj − fj , h〉 = 〈ϕj , h〉 − h(0)fj(0) = 〈ϕj , h〉 → 0

as j → ∞, which implies gj → 0 weakly in D. Thus we have the desired
result. �

Proposition 3.4. If hj converges to 0 weakly in D, then hj and hj converge
to 0 weakly in Dph.
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Proof. For ϕ = f + g ∈ D0 +D, we have

〈hj , ϕ〉 = 〈hj , f + g〉 = 〈hj , f〉+ 〈hj , g〉 = 〈hj , f〉+ g(0)〈hj , 1〉
for each j. Combining hj → 0 weakly in D with f, 1 ∈ D, we have 〈hj , f+g〉 →
0 as j →∞. Thus hj → 0 weakly in Dph, so that hj → 0 weakly in Dph. Thus
we have the desired result. �

Finally the identity operator from Dph into b2 is compact as follows.

Lemma 3.5. The identity operator from Dph into b2 is compact.

Proof. Let ϕj = fj + gj ∈ D0 +D and ϕj → 0 weakly in Dph. By Proposition
3.3, fj and gj converge to 0 weakly in D, so that we have ‖fj‖2 → 0 and
‖gj‖2 → 0 as j →∞. From this we conclude that

‖ϕj‖2 ≤ ‖fj‖2 + ‖gj‖2 → 0

as j →∞. Thus we have the desired result. �

For u ∈ L1,∞, we let Su denote the Bergman space Toeplitz operator on A2

defined by
Suf = B(uf)

for all f ∈ A2. Clearly Su is a bounded linear operator on A2. Then we have

the Berezin transform ŜuSv is continuous up to Dn and

(11) ŜuSv = uv on ∂Dn

for given two bounded symbols u, v which are continuous on Dn. Here L̂ of L
is the Berezin transform on Dn defined by

L̂(a) = 〈Lba, ba〉2, a ∈ Dn;

see [7] for details.
We let B denote the C∗-algebra consisting of all bounded operators on

D (resp. Dph). Also, let K be the algebra of all compact operators on D
(resp. Dph). An operator L ∈ B is said to be Fredholm if L + K is invertible
in the quotient algebra B/K. Recall that L ∈ B is Fredholm if and only if
there exist L1, L2 ∈ B such that L1L − I, LL2 − I ∈ K. Also, if there exists
a sequence {fj} of unit vectors in D (resp. Dph) for which fj → 0 weakly and
‖Lfj‖ → 0 as j → ∞, then L can’t be Fredholm; see Chapter 6 of [4] for
example. Throughout the paper, L∗ denotes the adjoint operator of a bounded
operator L.

Theorem 3.6. Let u ∈ L1,∞. Then Tu is Fredhlom on D if and only if u has
no zero on ∂Dn.

Proof. Suppose Tu is Fredhlom on D and u(ζ) = 0 for some ζ ∈ ∂Dn. Note
that

‖Tuea‖2 ≤ ‖uea‖2 =

∣∣∣∣∫
Dn

uea dV

∣∣∣∣2 + ‖R(uea)‖22 + ‖R̃(uea)‖22
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for all a ∈ Dn. Using Lemmas 3.1 and 3.2, we obtain∣∣∣∣∫
Dn

uea dV

∣∣∣∣2 ≤ ‖u‖2∞‖ea‖22 → 0

and similarly

‖R̃(uea)‖22 ≤ ‖eaR̃u‖22 ≤ ‖R̃u‖2∞‖ea‖22 → 0

as a→ ζ. It remains to estimate ‖R(uea)‖22. Note that

‖eaRu‖22 ≤ ‖Ru‖2∞‖ea‖22 → 0

and

|〈eaRu, uRea〉2| ≤
1

‖Ea‖

∫
Dn

|ea(Ru)u(Ba − 1)| dV

≤ ‖Ru‖∞‖u‖∞
‖Ba‖2 + 1

‖Ea‖
‖ea‖2 → 0

as a→ ζ. Also, we have

‖uRea‖22 =
1

‖Ea‖2
〈u(Ba − 1), u(Ba − 1)〉2

≤ 1

‖Ea‖2
(‖uBa‖22 + 2|〈uBa, u〉2|+ ‖u‖22)

≤
(
‖Ba‖2
‖Ea‖

)2

〈S|u|2ba, ba〉2 +
‖u‖2∞(2‖Ba‖2 + 1)

‖Ea‖2

≤
(
‖Ba‖2
‖Ea‖

)2

Ŝ|u|2(a) +
3‖u‖2∞‖Ba‖2
‖Ea‖2

for all a ∈ Dn. Recall that |u|2 is continuous on Dn. Combining these obser-
vations with (10) and (11), we obtain

lim
a→ζ
‖R(uea)‖22 = lim

a→ζ

(
‖eaRu‖22+〈eaRu, uRea〉2+〈uRea, eaRu〉2+‖uRea‖22

)
= lim
a→ζ
‖uRea‖22

≤ lim
a→ζ

Ŝ|u|2(a) = |u(ζ)|2.

Thus the assumption u(ζ) = 0 yields

lim
a→ζ
‖Tuea‖2 ≤ ‖uea‖2 ≤ |u(ζ)|2 = 0.

Since the sequence {ea} of unit vectors converges weakly to 0 in D, Tu can’t
be Fredholm on D. Hence u has no zero on ∂Dn.

To prove the converse, assume u has no zero on ∂Dn. Since u has no zero
on ∂Dn, we can choose a bounded continuous function v on Dn with uv = 1
on ∂Dn. According to (11), we have

̂SuSv − I = ̂SuSv − S1 = uv − 1 = 0
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on ∂Dn, and so SuSv − I is compact. Also SvSu − I is compact by the similar
argument. Thus Su is Fredholm on A2.

Now suppose Tu is not Fredholm on D. Then, there is a sequence {kj} of
unit vectors in D converging weakly to 0 such that

‖Tukj‖ → 0 or ‖T ∗ukj‖ → 0

as j →∞; see Chapter 6 of [4] for example.
First consider the case ‖Tukj‖ → 0 as j → ∞. To get a contradiction, we

consider 〈LR(Tukj),Rkj〉2.

〈LR(Tukj),Rkj〉2 = 〈LR[P (ukj)],Rkj〉2
= 〈L(B[R(ukj)]−B[R(ukj)](0)),Rkj〉2
= 〈LB[R(ukj)],Rkj〉2 −B[R(ukj)](0)〈L1,Rkj〉2

and

〈LB[R(ukj)],Rkj〉2 = 〈LB[(Ru)kj ],Rkj〉2 + 〈LB[u(Rkj)],Rkj〉2
= 〈LB[(Ru)kj ],Rkj〉2 + 〈LSu(Rkj),Rkj〉2.

Since Su is Fredholm on A2, there exists a bounded operator L on A2 such
that LSu − I is compact on A2. From Rkj → 0 weakly in A2, we have

〈(LSu − I)Rkj ,Rkj〉2 → 0

as j →∞. Since |kj(0)| ≤ ‖kj‖2 → 0, we see that 〈Rkj ,Rkj〉2 → 1 as j →∞.
From this, we have

lim
j→∞
〈(LSu − I)Rkj ,Rkj〉2 = lim

j→∞
〈LSu(Rkj),Rkj〉2 − 1,

which gives

lim
j→∞
〈LSu(Rkj),Rkj〉2 = 1.

These facts with Lemma 3.5 implies

|〈LB[(Ru)kj ],Rkj〉2| ≤ ‖L‖‖Ru‖∞‖kj‖2‖Rkj‖2 → 0.

By the above facts and using Lemma 5 of [7] with 〈L1,Rkj〉2 → 0, we have

〈LR(Tukj),Rkj〉2 → 1(12)

as j →∞. On the other hand, since ‖Tukj‖ → 0 and ‖Rkj‖2 → 1, we see

|〈LR(Tukj),Rkj〉2| ≤ ‖LR(Tukj)‖2‖Rkj‖2 ≤ ‖L‖‖Tukj‖‖Rkj‖2 → 0

as j →∞, which is a contradiction to (12).
Now applying this argument to the other case, we can see that the fact

‖T ∗ukj‖ → 0 yields a contradiction. Hence Tu is Fredholm on D, which com-
pletes the proof. �



FREDHOLM TOEPLITZ OPERATORS 517

Given u ∈ L1,∞, the (little) Hankel operator Hu : D → D with symbol u is
defined by

Huf = P (uf)

for f ∈ D.

Proposition 3.7. For u ∈ L1,∞, the Hankel operator Hu is compact on D.

Proof. Let fj → 0 weakly on D as j →∞. From (7) and the L2-boundedness
of B, we have

‖Hufj‖2 = ‖P (ufj)‖2 = |P (ufj)(0)|2 + ‖R[P (ufj)]‖2

≤ ‖u‖2∞‖fj‖2 + ‖B[(Ru)fj ]−B[(Ru)fj ](0)‖22
≤ ‖u‖2∞‖fj‖2 + 4‖B[(Ru)fj ]‖22
≤ ‖u‖2∞‖fj‖2 + 4‖(Ru)fj‖22
≤ ‖u‖2∞‖fj‖2 + 4‖Ru‖2∞‖fj‖22
≤
(
‖u‖2∞ + 4‖Ru‖2∞

)
‖fj‖22

for each j. Recall that the compactness of the identity operator from D in A2

implies limj→∞ ‖fj‖22 = 0. From this, we have ‖Hufj‖ → 0 as j → ∞. Thus
Hu is compact on D as we desired. The proof is complete. �

Lemma 3.8. For u ∈ L1,∞ and f ∈ D, we have the followings.

(a) ‖T phu f‖2 = ‖Tuf‖2 − |〈f, T ∗u1〉|2 + ‖Huf‖2.
(b) ‖T phu f‖2 = ‖Huf‖2 − |〈f, T ∗u1〉|2 + ‖Tuf‖2.
(c) ‖(T phu )∗f‖2 = ‖T ∗uf‖2 − |〈f, Tu1〉|2 + ‖H∗uf‖2.

Proof. Let f ∈ D. Then we have by (3)

T phu f = P (uf) + P (uf)− P (uf)(0) = Tuf +Huf − Tuf(0),

so that

‖T phu f‖2 = ‖Tuf +Huf‖2 − |Tuf(0)|2 = ‖Tuf‖2 + ‖Huf‖2 − |Tuf(0)|2.

Since Tuf(0) = 〈Tuf, 1〉 = 〈f, T ∗u1〉, we have (a). Similarly one can prove (b).
Now we prove (c).

(T phu )∗f(z) = 〈(T phu )∗f,Rz〉 = 〈(T phu )∗f,Kz +Kz − 1〉
= 〈(Tu)∗f,Kz − 1〉+ 〈Kz, H

∗
uf〉

= (Tu)∗f(z) +H∗uf(z)

for every z ∈ Dn. Thus we have (c) following the similar method in the proof
of (a). The proof is complete. �
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Now we introduce the new notations as follows: for given u ∈ L1,∞, we
define bounded linear operators Au, Bu, Cu from D0 +D to Dph by

Au(f + g) = Tuf + Tug,

Bu(f + g) = Huf +Hug,

Cu(f + g) = −〈f, T ∗u1〉 − 〈g, T ∗u1〉,

(13)

respectively. Then we can decompose T phu into the sums of the operators Au, Bu
and Cu.

Lemma 3.9. For u ∈ L1,∞, we have T phu = Au +Bu + Cu.

Proof. Let ϕ = f + g ∈ D0 +D. From (3), we have

T phu ϕ = P (uf) + P (uf)− P (uf)(0) + P (ug) + P (ug)− P (ug)(0)

= Tuf +Huf − P (uf)(0) + Tug +Hug − P (ug)(0).

Here we obtain by the reproducing property

P (uf)(0) = 〈Tuf,K0〉 = 〈Tuf, 1〉 = 〈f, T ∗u1〉
and

P (ug)(0) = P (ug)(0) = 〈g, T ∗u1〉.
Using (13) with the above, we get

T phu ϕ = Tuf +Huf − 〈f, T ∗u1〉+ Tug +Hug − 〈g, T ∗u1〉
= Auϕ+Buϕ+ Cuϕ

for ϕ = f + g ∈ D0 +D. Thus we have the desired results. �

The following result shows that the relation between Tu and Au for the
Fredholm operator.

Lemma 3.10. Let u ∈ L1,∞. Then T phu is Fredhlom on Dph if and only if Au
has no zero on ∂Dn.

Proof. Let ϕj = fj + gj be a sequence in D0 + D and ϕj → 0 weakly in Dph.
Then Proposition 3.3 shows fj and gj converge weakly to 0 in D. Compactness
of Hu and Hu by Proposition 3.7 implies that ‖Hufj‖ → 0 and ‖Hugj‖ → 0
as j → ∞. Thus Bu is compact. Also Cu is compact by the definition. Using
Lemma 3.9, we have Au is compact as desired result. The proof is complete. �

Theorem 3.11. Let u ∈ L1,∞. Then T phu is Fredhlom on Dph if and only if u
has no zero on ∂Dn.

Proof. We first assume T phu is Fredhlom on Dph and u has a zero on ∂Dn. Then
Tu is not Fredholm on D. If Tu is not left Fredholm on D. Then there exists
a sequence {fj} of unit vectors in D which is weakly convergent to zero and
‖Tufj‖ → 0. Using Lemma 3.8 and Proposition 3.7, we have

lim
j→∞

‖T phu fj‖2 = lim
j→∞

(
‖Tufj‖2 − |〈fj , T ∗u1〉|2 + ‖Hufj‖2

)
= 0.
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Also {fj} converges weakly to 0 in Dph by Proposition 3.4, so that T phu is not
left Fredholm on Dph. Thus it is contradiction. Now we consider the case Tu
is not right Fredholm on D. By the similar way, there exists a sequence {gj}
of unit vectors in D such that gj → 0 weakly in D and ‖T ∗ugj‖ → 0 as j →∞.
Using Lemma 3.8 and Proposition 3.7 again, we have

lim
j→∞

(
‖(T phu )∗gj‖2 = ‖T ∗ugj‖2 − |〈gj , Tu1〉|2 + ‖H∗ugj‖2

)
= 0

since {gj} converges weakly to 0 in D. Applying Proposition 3.4 again, we see
that {fj} converges weakly to 0 in Dph, so that T phu is not right Fredholm on
Dph. Thus it is contradiction. It means that u has no zero on ∂Dn.

To prove the converse, we suppose u has no zero on ∂Dn. Then u has no
zero on ∂Dn, which implies Tu and Tu are Fredholm on D. Since Tu and Tu
are left Fredholm on D, there exist bounded linear operators L and M on D
such that LTu − I and MTu − I are compact on D. Now we define T from
D0 +D to Dph by

T (f + g) = Lf +Mg

for f + g ∈ D0 +D. Then one can see that T is well defined and linear. Also it
is bounded because L and M are bounded on D. We just show that TAu− I is
compact in Dph. Note that Tuf(0) 6= 0 in general. Thus we have with a simple
computation

(TAu − I)(F +G)

= T
(
TuF − TuF (0) + TuF (0) + TuG

)
− (F +G)

= LTuF − TuF (0)L1 + TuF (0)M1 +MTuG− (F +G)

(14)

for F +G ∈ D0 +D. Let ϕj = fj + gj in D0 +D converges weakly to 0 in Dph.
We obtain by (14),

(TAu − I)(ϕj) = [LTu − I](fj) + [MTu − I](gj) + Tufj(0)[M1− L1]

for each j. By Proposition 3.3, fj and gj converge weakly to 0 in D. Using
the compactness of LTu − I and MTu − I on D, we obtain [LTu − I](fj)→ 0

and [MTu − I](gj) → 0 in D as j → ∞. Also note that Tufj(0) = 〈fj , T ∗u1〉
for each j. From this we have Tufj(0)→ 0 in D. Thus Au is left Fredholm on
Dph. It is easy to show that Au is right Fredholm on Dph, since L is linear and
Lf(0) = 0. Following the same argument, we have for

(AuT − I)(ϕj) = [TuL− I](fj) + [TuM − I](gj),

where L and M are bounded linear on D such that TuL− I and TuM − I are
compact. The rest of the proof runs as before. Thus we conclude Au is right
Fredholm on Dph. Finally Au is Fredholm on Dph. Hence Lemma 3.10 gives
T ph is Fredholm on Dph. The proof is complete. �
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Recall that the essential spectrum σe(L) of L ∈ B is defined to be the
spectrum of L + K in B/K. Thus the following is a simple consequence of
Theorem 3.6 and 3.11.

Corollary 3.12. For u ∈ L1,∞, we have σe(Tu) = u(∂Dn) and σe(T
ph
u ) =

u(∂Dn) .
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