• Title/Summary/Keyword: Density of interface states

Search Result 70, Processing Time 0.039 seconds

Characterizations of Interface-state Density between Top Silicon and Buried Oxide on Nano-SOI Substrate by using Pseudo-MOSFETs

  • Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • The interface-states between the top silicon layer and buried oxide layer of nano-SOI substrate were developed. Also, the effects of thermal treatment processes on the interface-state distributions were investigated for the first time by using pseudo-MOSFETs. We found that the interface-state distributions were strongly influenced by the thermal treatment processes. The interface-states were generated by the rapid thermal annealing (RTA) process. Increasing the RTA temperature over $800^{\circ}C$, the interface-state density considerably increased. Especially, a peak of interface-states distribution that contributes a hump phenomenon of subthreshold curve in the inversion mode operation of pseudo-MOSFETs was observed at the conduction band side of the energy gap, hut it was not observed in the accumulation mode operation. On the other hand, the increased interface-state density by the RTA process was effectively reduced by the relatively low temperature annealing process in a conventional thermal annealing (CTA) process.

Annealing Effects on Ultra thin MOS Capacitors

  • Ng, Alvin Chi-hai;Xu, Jun;Xu, J.B.;Cheung, W.Y.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.62.1-62
    • /
    • 2003
  • Silicon oxide with thickness lee than 9 nm is fabricated by tube furnace oxidation. Nitrogen is added to dilute the oxidation rate. Aluminum dots with radius of 0.05 cm are deposited on the oixde. High frequency capacitance-voltage(HF C-V), conductance-voltage(G-V) and current-voltage(I-V) characteristics are measured. Annealing under nitrogen atmosphere is carried out with different time and at different temperature. Densities of the interface states before and after annealing are compared. After annealing, a decrease in density of the interface states is found. Experiments show that 45$0^{\circ}C$ annealing for 30 minutes has the lowest density of the interface states.

  • PDF

A Study of the Characteristics of Degradation in Nonvolatile MNOS Memory Devices (비휘발성 MNOS반도체 기억소자의 열화특성에 관한 연구)

  • 이상배;서원철;김병철;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.14-17
    • /
    • 1988
  • Degradation effects observed in nonvolatile MNOS memory devices with in increasing W/E (Write/Erase) cycling were investigated using n-type MNOS capacitors. The results showed that the density of Si-SiO$_2$ interface states and the conductivity of nitride were increased with W/E cycles, therefore the memory retention characteristics of the MNOS memory devices were degraded. Also, annealing of the degraded devices restored the original Si-SiO$_2$ interface states density, but failed to restore the original nitride conductivity. Based on these experimental results, we found that the degradation of memory retention characteristic was affected by the nitride conductivity rather than by Si-SiO$_2$ interface states.

  • PDF

Effect of Density-of-States (DOS) Parameters on the N-channel SLS Poly-Si TFT Characteristics

  • Ryu, Myung-Kwan;Kim, Eok-Su;Son, Gon;Lee, Jung-Yeal
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.718-722
    • /
    • 2006
  • The dependence of n-channel 2 shot SLS poly-Si TFT characteristics on the DOS (density of states) parameters was investigated by using a device simulation. Device performances were most sensitive to the DOS of poly-Si/gate insulator (GI) interface and poly-Si active layer. Deep level states at the poly-Si/GI interfaces strongly affect the subthreshold slope.

  • PDF

Measurements of Interface States In a MOS Capacitor by DLTS System Using Wideband Monophase Lock-in Amplifier (광대역 단상 Lock-in 증폭기 DLTS 시스템을 이용한 MOS Capacitor 계면상태 측정)

  • Bae, Dong-Gun;Chung, Sang-Koo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.807-813
    • /
    • 1986
  • Measurements of interface states in a MOS capacitor by DLTS system using wideband monophase lock-in amplifier are discussed. A new signal analysis method that takes into account the bias pulse width and the gate off width is presented to remove the errors in the measured parameters of interface states resulting from the traditional method which neglects the effect of those widths. Theoretical calculations are made for the parameters related to the rate window, signal to noise ratio, and the energy resolution. On the grounds of this discussion, interface states of the MOS capacitor on p-type substrate of (110) orentation are measured with the optimal gate-off width with respect to the S/N ratio and the energy resolution. The results are interface state density of the order of 10**10 (cm-\ulcornereV**-1) to 10**11 (cm-\ulcornereV**-1) in the energy range of Ev+0.15(dV) to Ev+0.5(eV), and constant capture cross section of the order of 10**-16 (cm\ulcorner.

  • PDF

The Study on the Trap Density in Thin Silicon Oxide Films

  • Kang, C.S.;Kim, D.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.43-46
    • /
    • 2000
  • In this paper, the stress and transient currents associated with the on and off time of applied voltage were used to measure the density and distribution of high voltage stress induced traps in thin silicon oxide films. The transient currents were due to the discharging of traps generated by high stress voltage in the silicon oxides. The trap distributions were relatively uniform near both cathode and anode interface. The trap densities were dependent on the stress polarity. The stress generated trap distributions were relatively uniform the order of $10^{11}\sim10^{21}$[states/eV/$cm^2$] after a stress. The trap densities at the oxide silicon interface after high stress voltages were in the $10^{10}\sim10^{13}$[states/eV/$cm^2$]. It appear that the stress and transient current that flowed when the stress voltage were applied to the oxide was caused by carriers tunneling through the silicon oxide by the high voltage stress generated traps.

  • PDF

Effect of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs (4H-SiC DMOSFETs의 계면 전하 밀도에 따른 스위칭 특성 분석)

  • Kang, Min-Seok;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.436-439
    • /
    • 2010
  • SiC power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics. In this work, we report the effect of the interface states ($Q_f$) on the transient characteristics of SiC DMOSFETs. The key design parameters for SiC DMOSFETs have been optimized by using a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. When the $SiO_2$/SiC interface charge decreases, power losses and switching time also decrease, primarily due to the lowered channel mobilities. High density interface states can result in increased carrier trapping, or more recombination centers or scattering sites. Therefore, the quality of $SiO_2$/SiC interfaces has a important effect on both the static and transient properties of SiC MOSFET devices.

A Study on Partial Discharge Propeties of Interface Layer in-Mica-Epoxy Composite Material (마이카-에폭시 복합절연계 계면층의 부분방전 특성에 관한 연구)

  • 이은학;김태성;박종건;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.83-89
    • /
    • 1991
  • The partial discharge properties of interface layer in Mica-Epoxy composite, which has been mainly used for the coil insulating material of high voltage machinery, are different from those of resins due to the abnormal interface layer to be presented between inorganic material and resin. Accordingly, the study on discharge of interface in composite insulting system is strongly requsted for not only an increasing of insulating strength, but also the basical information of diagnosis system for high voltage equipment. As a result, it has been confirmed that the interface is an abnormal resin layer and the contact states at interface is depended upon the density of silane aqueous solution. Pulse frequency at abnormal interface shows a linear increasing with enlargement of discharge quantity. Whereas, in case of normal interface, pulse frequency property represents exponential increasing at the point of saturating. A life model can be diagramed from results of time dependance of skewness, and a survival life time can be quantified from the life model suggested.

Comparative Investigation of Interfacial Characteristics between HfO2/Al2O3 and Al2O3/HfO2 Dielectrics on AlN/p-Ge Structure

  • Kim, Hogyoung;Yun, Hee Ju;Choi, Seok;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.463-468
    • /
    • 2019
  • The electrical and interfacial properties of $HfO_2/Al_2O_3$ and $Al_2O_3/HfO_2$ dielectrics on AlN/p-Ge interface prepared by thermal atomic layer deposition are investigated by capacitance-voltage(C-V) and current-voltage(I-V) measurements. In the C-V measurements, humps related to mid-gap states are observed when the ac frequency is below 100 kHz, revealing lower mid-gap states for the $HfO_2/Al_2O_3$ sample. Higher frequency dispersion in the inversion region is observed for the $Al_2O_3/HfO_2$ sample, indicating the presence of slow interface states A higher interface trap density calculated from the high-low frequency method is observed for the $Al_2O_3/HfO_2$ sample. The parallel conductance method, applied to the accumulation region, shows border traps at 0.3~0.32 eV for the $Al_2O_3/HfO_2$ sample, which are not observed for the $Al_2O_3/HfO_2$ sample. I-V measurements show a reduction of leakage current of about three orders of magnitude for the $HfO_2/Al_2O_3$ sample. Using the Fowler-Nordheim emission, the barrier height is calculated and found to be about 1.08 eV for the $HfO_2/Al_2O_3$ sample. Based on these results, it is suggested that $HfO_2/Al_2O_3$ is a better dielectric stack than $Al_2O_3/HfO_2$ on AlN/p-Ge interface.

Transient trap density in thin silicon oxides

  • Kang, C.S.;Kim, D.J.;Byun, M.G.;Kim, Y.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.412-417
    • /
    • 2000
  • High electric field stressed trap distributions were investigated in the thin silicon oxide of polycrystalline silicon gate metal oxide semiconductor capacitors. The transient currents associated with the off time of stressed voltage were used to measure the density and distribution of high voltage stress induced traps. The transient currents were due to the discharging of traps generated by high stress voltage in the silicon oxides. The trap distributions were relatively uniform near both cathode and anode interface in polycrystalline silicon gate metal oxide semiconductor devices. The stress generated trap distributions were relatively uniform the order of $10^{11}$~$10^{12}$ [states/eV/$\textrm{cm}^2$] after a stress. The trap densities at the oxide silicon interface after high stress voltages were in the $10^{10}$~$10^{13}$ [states/eV/$\textrm{cm}^2$]. It was appeared that the transient current that flowed when the stress voltages were applied to the oxide was caused by carriers tunneling through the silicon oxide by the high voltage stress generated traps.

  • PDF