Characterizations of Interface-state Density between Top Silicon and Buried Oxide on Nano-SOI Substrate by using Pseudo-MOSFETs

  • Cho, Won-Ju (Department of Electronic Materials Engineering College of Electronics and Information, Kwangwoon University)
  • 발행 : 2005.06.30

초록

The interface-states between the top silicon layer and buried oxide layer of nano-SOI substrate were developed. Also, the effects of thermal treatment processes on the interface-state distributions were investigated for the first time by using pseudo-MOSFETs. We found that the interface-state distributions were strongly influenced by the thermal treatment processes. The interface-states were generated by the rapid thermal annealing (RTA) process. Increasing the RTA temperature over $800^{\circ}C$, the interface-state density considerably increased. Especially, a peak of interface-states distribution that contributes a hump phenomenon of subthreshold curve in the inversion mode operation of pseudo-MOSFETs was observed at the conduction band side of the energy gap, hut it was not observed in the accumulation mode operation. On the other hand, the increased interface-state density by the RTA process was effectively reduced by the relatively low temperature annealing process in a conventional thermal annealing (CTA) process.

키워드

참고문헌

  1. J. P. Colinge, Silicon-On-Insulator Technology:Materials to VLSI, 2nd Ed. BOSTON, MA: Kluwer Academic Publishers, 1997
  2. D. J. Shahidi, C. A. Anderson, B. A. Chappell. T. I. Chappell, J. H. Comfort, B. Davari, R. H. Dennard, R. L. French, P. A. MacFarland, J. S. Neely, T. H. Ning, M. R. Polcari, and J. D. Warnock, IEEE Trans. Electron Dev., Vol. 41, pp. 2405, Dec. 1994 https://doi.org/10.1109/16.337456
  3. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, Vol. 293, pp. 1289, Aug. 2001 https://doi.org/10.1126/science.1062711
  4. J. T. Sheu, K. S. You, C. C. Chen, and S. C. Lin, Abstract of 48th EIPBN, pp. 29, 2004
  5. S. Cristoloveanu, D. Daniela, M. S. T. Liu, IEEE Trans. Electron Dev., Vol. 47, pp. 1018, May. 2000 https://doi.org/10.1109/16.841236
  6. S. Cristoloveanu and S. S. Liu, Electrical Characterization of SOI Materials and Devices, Boston, MA: Kluwer Academic Publishers, 1995
  7. W. J. Cho, K. J. Im, C. G. Ahn, J. H. Yang, J. H. Oh, I. B. Baek, and S. J. Lee, J. Vac. Sci. Technol. B 22(6), pp. 3210, Nov/Dec 2004 https://doi.org/10.1116/1.1813461
  8. B. J. O Sullivan, P. K. Hurley, C. Leveugle, J. H. Das, J. Appl. Phys., vol. 89, no. 7, pp. 3811-3820, Apr. 2001 https://doi.org/10.1063/1.1343897
  9. S. Isomae, Y. Tamaki, A. Yajima, M. Nanba and M. Maki, Electrochem. Soc., vol. 126, pp. 1014, 1979 https://doi.org/10.1149/1.2129166
  10. J. Chen, P. K. Ko, C. Hu, R. Solomon, and T.-Y. Chan, Proc. Int. Symp. VLSI Technology, Systems, Applications, pp. 219, 1991 https://doi.org/10.1109/VTSA.1991.246678
  11. W. J. Cho and S. J. Lee, Jpn. J. Appl. Phys., vol. 42, no. 5A, pp. 2615, May 2003 https://doi.org/10.1143/JJAP.42.2615