Browse > Article

Characterizations of Interface-state Density between Top Silicon and Buried Oxide on Nano-SOI Substrate by using Pseudo-MOSFETs  

Cho, Won-Ju (Department of Electronic Materials Engineering College of Electronics and Information, Kwangwoon University)
Publication Information
Abstract
The interface-states between the top silicon layer and buried oxide layer of nano-SOI substrate were developed. Also, the effects of thermal treatment processes on the interface-state distributions were investigated for the first time by using pseudo-MOSFETs. We found that the interface-state distributions were strongly influenced by the thermal treatment processes. The interface-states were generated by the rapid thermal annealing (RTA) process. Increasing the RTA temperature over $800^{\circ}C$, the interface-state density considerably increased. Especially, a peak of interface-states distribution that contributes a hump phenomenon of subthreshold curve in the inversion mode operation of pseudo-MOSFETs was observed at the conduction band side of the energy gap, hut it was not observed in the accumulation mode operation. On the other hand, the increased interface-state density by the RTA process was effectively reduced by the relatively low temperature annealing process in a conventional thermal annealing (CTA) process.
Keywords
Nano-SOI substrate; Pseudo-MOSFETs; Back interface states; Thermal annealing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Isomae, Y. Tamaki, A. Yajima, M. Nanba and M. Maki, Electrochem. Soc., vol. 126, pp. 1014, 1979   DOI
2 J. Chen, P. K. Ko, C. Hu, R. Solomon, and T.-Y. Chan, Proc. Int. Symp. VLSI Technology, Systems, Applications, pp. 219, 1991   DOI
3 W. J. Cho and S. J. Lee, Jpn. J. Appl. Phys., vol. 42, no. 5A, pp. 2615, May 2003   DOI
4 J. P. Colinge, Silicon-On-Insulator Technology:Materials to VLSI, 2nd Ed. BOSTON, MA: Kluwer Academic Publishers, 1997
5 D. J. Shahidi, C. A. Anderson, B. A. Chappell. T. I. Chappell, J. H. Comfort, B. Davari, R. H. Dennard, R. L. French, P. A. MacFarland, J. S. Neely, T. H. Ning, M. R. Polcari, and J. D. Warnock, IEEE Trans. Electron Dev., Vol. 41, pp. 2405, Dec. 1994   DOI   ScienceOn
6 Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, Vol. 293, pp. 1289, Aug. 2001   DOI   ScienceOn
7 J. T. Sheu, K. S. You, C. C. Chen, and S. C. Lin, Abstract of 48th EIPBN, pp. 29, 2004
8 S. Cristoloveanu, D. Daniela, M. S. T. Liu, IEEE Trans. Electron Dev., Vol. 47, pp. 1018, May. 2000   DOI   ScienceOn
9 W. J. Cho, K. J. Im, C. G. Ahn, J. H. Yang, J. H. Oh, I. B. Baek, and S. J. Lee, J. Vac. Sci. Technol. B 22(6), pp. 3210, Nov/Dec 2004   DOI   ScienceOn
10 S. Cristoloveanu and S. S. Liu, Electrical Characterization of SOI Materials and Devices, Boston, MA: Kluwer Academic Publishers, 1995
11 B. J. O Sullivan, P. K. Hurley, C. Leveugle, J. H. Das, J. Appl. Phys., vol. 89, no. 7, pp. 3811-3820, Apr. 2001   DOI   ScienceOn