Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.8.463

Comparative Investigation of Interfacial Characteristics between HfO2/Al2O3 and Al2O3/HfO2 Dielectrics on AlN/p-Ge Structure  

Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech))
Yun, Hee Ju (Departmet of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech))
Choi, Seok (Departmet of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech))
Choi, Byung Joon (Departmet of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech))
Publication Information
Korean Journal of Materials Research / v.29, no.8, 2019 , pp. 463-468 More about this Journal
Abstract
The electrical and interfacial properties of $HfO_2/Al_2O_3$ and $Al_2O_3/HfO_2$ dielectrics on AlN/p-Ge interface prepared by thermal atomic layer deposition are investigated by capacitance-voltage(C-V) and current-voltage(I-V) measurements. In the C-V measurements, humps related to mid-gap states are observed when the ac frequency is below 100 kHz, revealing lower mid-gap states for the $HfO_2/Al_2O_3$ sample. Higher frequency dispersion in the inversion region is observed for the $Al_2O_3/HfO_2$ sample, indicating the presence of slow interface states A higher interface trap density calculated from the high-low frequency method is observed for the $Al_2O_3/HfO_2$ sample. The parallel conductance method, applied to the accumulation region, shows border traps at 0.3~0.32 eV for the $Al_2O_3/HfO_2$ sample, which are not observed for the $Al_2O_3/HfO_2$ sample. I-V measurements show a reduction of leakage current of about three orders of magnitude for the $HfO_2/Al_2O_3$ sample. Using the Fowler-Nordheim emission, the barrier height is calculated and found to be about 1.08 eV for the $HfO_2/Al_2O_3$ sample. Based on these results, it is suggested that $HfO_2/Al_2O_3$ is a better dielectric stack than $Al_2O_3/HfO_2$ on AlN/p-Ge interface.
Keywords
$HfO_2/Al_2O_3$; mid-gap states; leakage current;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Xie, S. Deng, M. Schaekers, D. Lin, M. Caymax, A. Delabie, X. Qu, Y. Jiang, D. Deduytsche and C. Detavernier, Semicond. Sci. Technol., 27, 074012 (2012).   DOI
2 Y. Fukuda, T. Ueno, S. Hirono and S. Hashimoto, Jpn. J. Appl. Phys., 44, 6981 (2005).   DOI
3 M. Perego, G. Scarel, M. Fanciulli, I. Fedushkin and A. Skatova, Appl. Phys. Lett., 90, 162115 (2007).   DOI
4 D. Kuzum, T. Krishnamohan, A. Nainani, Y. Sun, P. Pianetta, H. Wong and K. Saraswat, IEEE Trans. Electron Dev., 58, 59 (2011).   DOI
5 R. Zhang, P.-C. Huang, J.-C. Lin, N. Taoka, M. Takenaka and S. Takagi, IEEE Trans. Electron Dev., 60, 927 (2013).   DOI
6 D. Kuzum, T. Krishnamohan, A. Pethe, A. Okyay, Y. Oshima, Y. Sun, J. McVittie, P. Pianetta, P. McIntyre and K. Saraswat, IEEE Electron Dev. Lett., 29, 328 (2008).   DOI
7 F. Bin, L. Xia, F. Xi, M. Fei, F. Jiao and H. Yue, Chin. Phys. B, 22, 037702 (2013).   DOI
8 Y. Seo, C. Kim, T. Lee, W. Hwang, H. Yu, Y. Choi and B. Cho, IEEE Trans. Electron Dev., 64, 3998 (2017).   DOI
9 H. Li, L. Lin and J. Robertson, Appl. Phys. Lett., 101, 052903 (2012).   DOI
10 H. Li, Y. Guo and J. Robertson, Microelectron. Eng., 147, 168 (2015).   DOI
11 R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka and S. Takagi, J. Electrochem. Soc., 158, G178 (2011).   DOI
12 H. Kim, P. McIntyre, C. Chui, K. Saraswat and M. Cho, Appl. Phys. Lett., 85, 2902 (2004).   DOI
13 X. Li, Y. Cao, A. Li, H. Li and D. Wu, ECS Solid State Lett., 1, N10 (2012).   DOI
14 I. Krylov, L. Kornblum, A. Gavrilov, D. Ritter and M. Eizenberg, Appl. Phys. Lett., 100, 173508 (2012).   DOI
15 D. Misra, Electrochem. Soc. Interface, 20, 47 (2011).   DOI
16 M. Usman, C. Henkel and A. Hall'en, ECS J. Solid State Sci. Technol., 2, N3087 (2013).   DOI
17 G. Wilk, M. Green, M. Ho, B. Busch, T. Sorsch, F. Klemens, B. Brijs, R. van Dover, A. Kornblit, T. Gustafsson, E. Garfunkel, S. Hillenius, D. Monroe, P. Kalavade and M. Hergenrother, Tech. Dig. VLSI Symp., p. 88 (2002).
18 J. Kerr, Strengths of Chemical bonds, in CRC Handbook of Chemistry and Physics, p. 9-54, ed. D. R. Lide, CRC Press, Boca Raton, FL (2005).
19 R. Engel-Herbert, Y. Hwang and S. Stemmer, J. Appl. Phys., 108, 124101 (2010).   DOI
20 F. Bellenger, M. Houssa, A. Delabie, V. Afanasiev, T. Conard, M. Caymax, M. Meuris, K. Meyer and M. Heyns, J. Electrochem. Soc., 155, G33 (2008).   DOI
21 Y. Choi, H. Lim, S. Lee, S. Suh, J. Kim, H. Jung, S. Park, J. Lee, S. Kim, C. Hwang and H. Kim, ACS. Appl, Mater. Interfaces, 4, 7885 (2014)
22 P. Lim, D. Chi, X. Wang and Y. Yeo, Appl. Phys. Lett., 101, 172103 (2012).   DOI
23 K. Prabhakaran, F. Maeda, Y. Watanabe and T. Ogino, Appl. Phys. Lett., 76, 2244 (2000).   DOI
24 H. Seo, F. Bellenger, K. Chung, M. Houssa, M. Meuris, M. Heyns and G. Lucovsky, J. Appl. Phys., 106, 044909 (2009).   DOI
25 D. Wang, S. Kojima, K. Sakamoto, K. Yamamoto and H. Nakashima, J. Appl. Phys., 112, 083707 (2012).   DOI
26 Y. Yuan, L. Wang, B. Yu, B. Shin, J. Ahn, P. McIntyre, P. Asbeck, M. Rodwell and Y. Taur, IEEE Electron Dev. Lett., 32, 485 (2011).   DOI
27 D. Schroder, Semiconductor Material and Device Characterization, p. 1, Wiley, New York, USA (2005).
28 S. Gupta, E. Simoen, R. Loo, O. Madia, D. Lin, C. Merckling, Y. Shimura, T. Conard, J. Lauwaert, H. Vrielinck and M. Heyns, ACS Appl. Mater. Interfaces, 8, 13181 (2016).   DOI
29 G. He, L. Zhang, G. Meng, G. Li, Q. Fang and J. Zhang, J. Appl. Phys., 102, 094103 (2007).   DOI
30 E. Miyazaki, Y. Goda, S. Kishimoto and T. Mizutani, Solid-State Electron., 62, 152 (2011).   DOI
31 J. Robertson and B. Falabretti, J. Appl. Phys., 100, 014111 (2006).   DOI
32 D. Deen, S. Binari, D. Storm, D. Katzer, J. Roussos, J. Hackley and T. Gougousi, Electron. Lett., 45, 423 (2009).   DOI
33 G. Dutta, N. DasGupta and A. DasGupta, IEEE Trans. Electron Dev., 64, 3609 (2017).   DOI
34 F. Tian and E. Chor, J. Electrochem. Soc., 157, H557 (2010).   DOI