• Title/Summary/Keyword: Degenerate Equations

Search Result 45, Processing Time 0.024 seconds

SELF-SIMILAR SOLUTIONS FOR THE 2-D BURGERS SYSTEM IN INFINITE SUBSONIC CHANNELS

  • Song, Kyung-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.29-37
    • /
    • 2010
  • We establish the existence of weak solutions in an infinite subsonic channel in the self-similar plane to the two-dimensional Burgers system. We consider a boundary value problem in a fixed domain such that a part of the domain is degenerate, and the system becomes a second order elliptic equation in the channel. The problem is motivated by the study of the weak shock reflection problem and 2-D Riemann problems. The two-dimensional Burgers system is obtained through an asymptotic reduction of the 2-D full Euler equations to study weak shock reflection by a ramp.

Condition of pseudohyperbolic structure

  • Kim, Jong-Heon;George Osipenko
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.193-201
    • /
    • 1997
  • The paper presens results on the perturbation problem of invariant manifolds of differential equations. It is well-known that if there is a pseudohyperbollic structure on an invariant manifold then one is strongly indestructible. The set of strongly inderstructible invariant manifolds is wider than the set of persistent (normally hyperbolic) manifolds. The following theorem is main result of the paper: if the condition of transversality holds on an invariant manifold, except, possibly, for the non-degenerate strong sources and non-degenerate strong sinks, then there is the pseudohyperbolic structure on the invariant manifold. From this it follows the conditions for the indestructibility of locally non-unique invariant manifolds. An example is considered.

  • PDF

A Priori Boundary Estimations for an Elliptic Operator

  • Cho, Sungwon
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.273-277
    • /
    • 2014
  • In this article, we consider a singular and a degenerate elliptic operators in a divergence form. The singularities exist on a part of boundary, and comparable to the logarithmic distance function or its inverse. If we assume that the operator can be treated in a pointwise sense than distribution sense, with this operator we obtain a priori Harnack continuity near the boundary. In the proof we transform the singular elliptic operator to uniformly bounded elliptic operator with unbounded first order terms. We study this type of estimations considering a De Giorgi conjecture. In his conjecture, he proposed a certain ellipticity condition to guarantee a continuity of a solution.

Development of Canonical Fractional-Step Methods and Consistent Boundary Conditions for Computation of Incompressible Flows (비압축성유동의 수치계산을 위한 표준분할단계방법 및 일관된 경계조건의 개발)

  • Lee, Moon-J.;Oh, Byung-Do;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.404-409
    • /
    • 2001
  • An account of second-order fractional-step methods and boundary conditions for the incompressible Navier-Stokes equations is presented. The present work has aimed at (i) identification and analysis of all possible splitting methods of second-order splitting accuracy; and (ii) determination of consistent boundary conditions that yield second-order accurate solutions. It has been found that only three types (D, P and M) of splitting methods called the canonical methods are non-degenerate so that all other second-order splitting schemes are either degenerate or equivalent to them. Investigation of the properties of the canonical methods indicates that a method of type D is recommended for computations in which the zero divergence is preferred, while a method of type P is better suited to the cases when highly-accurate pressure is more desirable. The consistent boundary conditions on the tentative velocity and pressure have been determined by a procedure that consists of approximation of the split equations and the boundary limit of the result. The pressure boundary condition is independent of the type of fractional-step methods. The consistent boundary conditions on the tentative velocity were determined in terms of the natural boundary condition and derivatives of quantities available at the current timestep (to be evaluated by extrapolation). Second-order fractional-step methods that admit the zero pressure-gradient boundary condition have been derived. The boundary condition on the new tentative velocity becomes greatly simplified due to improved accuracy built in the transformation.

  • PDF

ON SOME p(x)-KIRCHHOFF TYPE EQUATIONS WITH WEIGHTS

  • Chung, Nguyen Thanh
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.113-128
    • /
    • 2014
  • Consider a class of p(x)-Kirchhoff type equations of the form $$\left\{-M\left({\int}_{\Omega}\;\frac{1}{p(x)}{\mid}{\nabla}u{\mid}^{p(x)}\;dx\right)\;div\;({\mid}{\nabla}u{\mid}^{p(x)-2}{\nabla}u)={\lambda}V(x){\mid}u{\mid}^{q(x)-2}u\;in\;{\Omega},\\u=0\;on\;{\partial}{\Omega},$$ where p(x), $q(x){\in}C({\bar{\Omega}})$ with 1 < $p^-\;:=inf_{\Omega}\;p(x){\leq}p^+\;:=sup_{\Omega}p(x)$ < N, $M:{\mathbb{R}}^+{\rightarrow}{\mathbb{R}}^+$ is a continuous function that may be degenerate at zero, ${\lambda}$ is a positive parameter. Using variational method, we obtain some existence and multiplicity results for such problem in two cases when the weight function V (x) may change sign or not.

ON EXISTENCE OF SOLUTIONS OF DEGENERATE WAVE EQUATIONS WITH NONLINEAR DAMPING TERMS

  • Park, Jong-Yeoul;Bae, Jeong-Ja
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.465-490
    • /
    • 1998
  • In this paper, we consider the existence and asymptotic behavior of solutions of the following problem: $u_{tt}$ -(t, x) - (∥∇u(t, x)∥(equation omitted) + ∥∇v(t, x) (equation omitted)$^{\gamma}$ $\Delta$u(t, x)+$\delta$$u_{t}$ (t, x)│sup p-1/ $u_{t}$ (t, x) = $\mu$│u(t, x) $^{q-1}$u(t, x), x$\in$$\Omega$, t$\in$[0, T], $v_{tt}$ (t, x) - (∥∇uu(t, x) (equation omitted) + ∥∇v(t, x) (equation omitted)sup ${\gamma}$/ $\Delta$v(t, x)+$\delta$$v_{t}$ (t, x)│sup p-1/ $u_{t}$ (t, x) = $\mu$ u(t, x) $^{q-1}$u(t, x), x$\in$$\Omega$, t$\in$[0, T], u(0, x) = $u_{0}$ (x), $u_{t}$ (0, x) = $u_1$(x), x$\in$$\Omega$, u(0, x) = $v_{0}$ (x), $v_{t}$ (0, x) = $v_1$(x), x$\in$$\Omega$, u│∂$\Omega$=v│∂$\Omega$=0 T > 0, q > 1, p $\geq$1, $\delta$ > 0, $\mu$ $\in$ R, ${\gamma}$ $\geq$ 1 and $\Delta$ is the Laplacian in $R^{N}$.X> N/.

  • PDF

Modeling of Degenerate Quantum Well Devices Including Pauli Exclusion Principle

  • Lee, Eun-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.14-26
    • /
    • 2002
  • A new model for degenerate semiconductor quantum well devices was developed. In this model, the multi-subband Boltzmann transport equation was formulated by applying the Pauli exclusion principle and coupled to the Schrodinger and Poisson equations. For the solution of the resulted nonlinear system, the finite difference method and the Newton-Raphson method was used and carrier energy distribution function was obtained for each subband. The model was applied to a Si MOSFET inversion layer. The results of the simulation showed the changes of the distribution function from Boltzmann like to Fermi-Dirac like depending on the electron density in the quantum well, which presents the appropriateness of this modeling, the effectiveness of the solution method, and the importance of the Pauli -exclusion principle according to the reduced size of semiconductor devices.

ROLLING STONES WITH NONCONVEX SIDES II: ALL TIME REGULARITY OF INTERFACE AND SURFACE

  • Lee, Ki-Ahm;Rhee, Eun-Jai
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.585-604
    • /
    • 2012
  • In this paper we consider the evolution of the rolling stone with a rotationally symmetric nonconvex compact initial surface ${\Sigma}_0$ under the Gauss curvature flow. Let $X:S^n{\times}[0,\;{\infty}){\rightarrow}\mathbb{R}^{n+1}$ be the embeddings of the sphere in $\mathbb{R}^{n+1}$ such that $\Sigma(t)=X(S^n,t)$ is the surface at time t and ${\Sigma}(0)={\Sigma}_0$. As a consequence the parabolic equation describing the motion of the hypersurface becomes degenerate on the interface separating the nonconvex part from the strictly convex side, since one of the curvature will be zero on the interface. By expressing the strictly convex part of the surface near the interface as a graph of a function $z=f(r,t)$ and the non-convex part of the surface near the interface as a graph of a function $z={\varphi}(r)$, we show that if at time $t=0$, $g=\frac{1}{n}f^{n-1}_{r}$ vanishes linearly at the interface, the $g(r,t)$ will become smooth up to the interface for long time before focusing.

ON SOLVABILITY OF A CLASS OF DEGENERATE KIRCHHOFF EQUATIONS WITH LOGARITHMIC NONLINEARITY

  • Ugur Sert
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.565-586
    • /
    • 2023
  • We study the Dirichlet problem for the degenerate nonlocal parabolic equation ut - a(||∇u||2L2(Ω))∆u = Cb ||u||βL2(Ω) |u|q(x,t)-2 u log |u| + f in QT, where QT := Ω × (0, T), T > 0, Ω ⊂ ℝN, N ≥ 2, is a bounded domain with a sufficiently smooth boundary, q(x, t) is a measurable function in QT with values in an interval [q-, q+] ⊂ (1, ∞) and the diffusion coefficient a(·) is a continuous function defined on ℝ+. It is assumed that a(s) → 0 or a(s) → ∞ as s → 0+, therefore the equation degenerates or becomes singular as ||∇u(t)||2 → 0. For both cases, we show that under appropriate conditions on a, β, q, f the problem has a global in time strong solution which possesses the following global regularity property: ∆u ∈ L2(QT) and a(||∇u||2L2(Ω))∆u ∈ L2(QT ).