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C∞-REGULARITY OF INTERFACE OF SOME

ONE-DIMENSIONAL NONLINEAR DEGENERATE

PARABOLIC EQUATIONS

Youngsang Ko and Jeonggil Cho

Abstract. We prove the regularity of a moving interface of the
solutions of the initial value problem of equation (1.1) is C∞.

1. Introduction

We consider the Cauchy problem of the form

(1.1) ut =
∂

∂x

(
∂um

∂x

∣∣∣∣∂um

∂x

∣∣∣∣p−2
)

in S = {(x, t) ∈ R× R+}

where m > 0, p > 1 + 1
m

.
Equations like (1.1) were studied many authors and arise in different

physical situations, for the detail see [3]. An important quantity of
the study of equation (1.1) is the local velocity of propagation V =
−vx|vx|p−2, whose expression in terms of u can be obtained by writing
the equation as a conservation law in the form

ut + (uV )x = 0.

In this way we get
V = −vx|vx|p−2,

where the nonlinear potential v(x, t) is

(1.2) v =
m(p− 1)

m(p− 1)− 1
um− 1

p−1

and by a direct computation v satisfies

(1.3) vt = (m(p− 1)− 1)v|vx|p−2vxx + |vx|p.
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In [3], it was shown that V satisfies

Vx ≤
1

(p− 1)(m + 1)t
,

which can also be written as

(1.4) (vx|vx|p−2)x ≥ − 1

(p− 1)(m + 1)t

Without loss of generality, we may consider the case where u0 vanishes
on R− and is a continuous positive function, at least, on an interval (0, a)
with a > 0. Let

P [u] = {(x, t) ∈ S : u(x, t) > 0}
be the positivity set of a solution u. Then P [u] is bounded to the left in
(x, t)-plane by the left interface curve x = ζ(t)[3], where

ζ(t) = inf{x ∈ R : u(x, t) > 0}.
Moreover there is a time t∗ ∈ [0,∞), called the waiting time, such that
ζ(t) = 0 for 0 ≤ t ≤ t∗ and ζ(t) < 0 for t > t∗. It is shown [3] that t∗ is
finite(possibly zero) and ζ(t) is a nonincreasing C1 function on (t∗,∞).
Actually it is shown that ζ ′(t) < 0 for every t > t∗, i.e., a moving
interface never stop.

For the interface of the porous medium equation{
ut = 4(um) in Rn × [0,∞),

u(x, 0) = u0 on Rn

much more is known. D. G. Aronson and J. L. Vazquez [2] showed the
interfaces are smooth after the waiting time. S. Angenent [1] showed
that the interfaces are real analytic after the waiting time.

On the other hand much less is known for the equation (1.1). For
dimensions n ≥ 2, Zhao Junning [6] showed, under some nondegeneracy
conditions on the initial data, the interface is Lipschitz continuous and
we [4] improved this result, showing that, under the same hypotheses,
the interface is a C1,α surface after some time.

In this paper we show the interfaces of the solutions of (1.1) are
smooth after the waiting time. In establishing C∞ regularity of the
interfaces, we follow the ideas of Aronson and Vazquez. They showed
the C∞ regularity by establishing the bounds for v(k) for k ≥ 2, where
v = m

m−1
um−1 represents the pressure of the gas flow through a porous

medium, while u represents the density.
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2. The Upper and Lower Bound for vxx

Let q = (x0, t0) be a point on the left interface, so that x0 = ζ(t0),
v(x, t0) = 0 for all x ≤ ζ(t0), and v(x, t0) > 0 for all sufficiently small
x > ζ(t0). We assume the left interface is moving at q. Thus t0 > t∗.
We shall use the notation

Rδ,η = Rδ,η(t0) = {(x, t) ∈ R2 : ζ(t) < x ≤ ζ(t) + δ, t0 − η ≤ t ≤ t0 + η}.

Proposition 2.1. Let q be the point as above. Then there exist
positive constants C, δ and η depending only on p, q, m and u such that

vxx ≥ C in Rδ,η/2.

Proof. From (1.4) we have, vxx ≥ − 1

(m + 1)(p− 1)2|vx|p−2t
. But from

Lemma 4.4 in [3] vx is bounded away and above from zero near the
interface where u(x, t) > 0.

Proposition 2.2. Let q = (x0, t0) be as before. Then there exist
positive constants C2,δ and η depending only on p, q and u such that

vxx ≤ C2 in Rδ,η/2.

Proof. From Theorem 2 and Lemma 4.4 in [3] we have

(2.1) ζ ′(t0) = −vx|vx|p−2 = −vp−1
x = −a

and

(2.2) vt = |vx|p

on the moving part of the interface {x = ζ(t), t > t∗}. Choose ε > 0
satisfying

(2.3) (p− 1)a− [4m(p− 1) + p− 2]ε ≥ 2µ(a + ε)ε

and

(2.4) (a− ε)
1

p−1 ≥ 2|p− 3|(a + ε)
1

p−1 ε

where µ = 2{M(2p − 3) + p(p − 1)}. Then by Theorem 2 in [3], there
exists a δ = δ(ε) > 0 and η = η(ε) ∈ (0, t0 − t∗) such that Rδ,η ⊂ P [u],

(2.5) (a− ε)
1

p−1 < vx < (a + ε)
1

p−1

and

(2.6) vvxx ≤ (a− ε)
2

p−1 ε
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in Rδ,η. Then we have

(2.7) (a− ε)
1

p−1 (x− ζ) < v(x, t) < (a + ε)
1

p−1 (x− ζ)

in Rδ,η and

(2.8) −(a + ε) < ζ ′(t) < −(a− ε) in [t1, t2]

where t1 = t0 − η and t2 = t0 + η. We set

(2.9) ζ∗(t) = ζ(t1)− b(t− t1)

where b = a + 2ε. Then clearly ζ(t) > ζ∗(t) in (t1, t2].
Next, set M = m(p− 1)− 1. Then on P [u], w ≡ vxx satisfies

L(w) = wt −Mv|vx|p−2wxx − 3(p− 2)Mv|vx|p−4vxwwx

−{2M + p}|vx|p−2vxwx − {M(2p− 3) + p(p− 1)}|vx|p−2w2

−(p− 2)M(p− 3)v|vx|p−4w3.

We shall construct a barrier for w in Rδ,η of the form

φ(x, t) ≡ α

x− ζ(t)
+

β

x− ζ∗(t)
,

where α and β will be decided later.
By a direct computation, we have

L(φ) =
α

(x− ζ)2

{
ζ ′ −Mv|vx|p−2 2

x− ζ
+ [2M + p]|vx|p−2vx

}
+

β

(x− ζ∗)2

{
ζ∗

′ −Mv|vx|p−2 2

x− ζ∗
+ [2M + p]|vx|p−2vx

}
−[M(2p− 3) + p(p− 1)]|vx|p−2φ2 + G

where

G = −3(p− 2)Mv|vx|p−4vxφφx − (p− 2)M(p− 3)v|vx|p−4φ3

= (p− 2)Mv|vx|p−4 ×

φ

(
3vx[

α

(x− ζ)2
+

β

(x− ζ∗)2
]− (p− 3)[

α

x− ζ
+

β

x− ζ∗
]2
)

.

If we choose α and β satisfying

vx ≥ |p− 3|max(α, β)
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then G ≥ 0 in Rδ,η. Now set Ā =
α

(x− ζ)2
and B̄ =

β

(x− ζ∗)2
. Then we

have

L(φ) ≥ Ā
{

(p− 1)a− [4m(p− 1) + p− 3]ε− µ(a + ε)
p−2
p−1 α

}
+B̄

{
(p− 1)a− [4m(p− 1) + p− 2]ε− µ(a + ε)

p−2
p−1 β

}
where µ is as before. Set

0 < α ≤ min{(a− ε)
1

p−1

|p− 3|
,
(p− 1)a− [4m(p− 1) + p− 3]ε

µ(a + ε)
p−2
p−1

} = α0

and

(2.10) β = min{(a− ε)
1

p−1

|p− 3|
,
(p− 1)a− [4m(p− 1) + p− 2]ε

µ(a + ε)
p−2
p−1

}.

Then L(φ) ≥ 0 in Rδ,η for all α ∈ (0, α0] and β.
Let us now compare w and φ on the parabolic boundary of Rδ,η. In

view of (2.6) and (2.7) we have

vxx <
ε(a− ε)

1
p−1

x− ζ
in Rδ,η

and in particular

vxx(ζ(t) + δ, t) ≤ ε(a− ε)
1

p−1

δ
in [t1, t2].

By the mean value theorem and (2.8) we have for some τ ∈ (t1, t2)

ζ(t) + δ − ζ∗(t) = δ + (a + 2ε)(t− t1) + ζ ′(τ)(t− t1)

≤ δ + 3ε(t− t1) ≤ δ + 6εη.

Now set
η ≡ min{η(ε), δ(ε)/6ε}.

Since ε satisfies (2.3), (2.4) and β ≤ α0 it follows that

φ(ζ + δ, t) ≥ β

2δ
≥ (a + ε)

1
p−1

δ
ε ≥ vxx on [t1, t2].

Moreover

φ(x, t1) ≥
β

x− ζ(t1)
>

ε(a− ε)
1

p−1

x− ζ(t1)
> vxx(x, t1) on (ζ(t1), ζ(t1) + δ].
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Let Γ = {(x, t) ∈ R2 : x = ζ(t), t1 ≤ t ≤ t2}. Clearly Γ is a compact
subset of R2. Fix α ∈ (0, α0). For each point s ∈ Γ there is an open ball
Bs centered at s such that

(vvxx)(x, t) ≤ α(a− ε)
1

p−1 in Bs ∩ P [u].

In view of (2.7) we have

φ(x, t) ≥ α

x− ζ
≥ vxx(x, t) in Bs ∩ P [u].

Since Γ can be covered by a finite number of these balls it follows that
there is a γ = γ(α) ∈ (0, δ) such that

φ(x, t) ≥ w(x, t) in Rγ,η.

Thus for every α ∈ (0, α0), φ is a barrier for w in Rδ,η. By the comparison
principle for parabolic equations [5] we conclude that

vxx(x, t) ≤ α

x− ζ
+

β

x− ζ∗
in Rδ,η,

where β is given by (2.10) and α ∈ (0, α0) is arbitrary. Now let α ↓ 0 to
obtain

vxx(x, t) ≤ β

x− ζ∗
≤ 2β

εη
in R.

3. Bounds for
(

∂
∂x

)3
v

In this section we find the estimates of v(3) ≡
(

∂
∂x

)3
v. By a direct

computation we have,

L3(v
(3)) = v

(3)
t −Mvvp−2

x v
(3)
xx − (A + B)v

(3)
x − Cv(3) −D(v(3))2

−Evp−3
x v3

xx −M(p− 2)(p− 3)(p− 4)vvp−5
x v4

xx = 0(3.1)
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where

A = Mvp−1
x + M(p− 2)vvp−3

x vxx,

B = (2M + p)vp−1
x + 3M(p− 2)vvp−3

x vxx,

C = vxxv
p−2
x {(2M + p)(p− 1) + 2[M(2p− 3) + p(p− 1)]

+6M(p− 2)(p− 3)vv−2
x vxx + 3M(p− 2)},

D = 3M(p− 2)vvp−3
x

and

E = [M(2p− 3) + p(p− 1)](p− 2) + M(p− 2)(p− 3).

Suppose that q = (x0, t0) is a point on the left interface for which (2.1)
holds. Fix ε ∈ (0, a) and take δ0 = δ0(ε) > 0 and η0 = η(ε) ∈ (0, t0 − t∗)
such that R0 ≡ Rδ0,η0(t0) ⊂ P [u] and (2.6) holds. Thus we also have
(2.7) and (2.8) in R0. Then by rescaling and interior estimate we have

Proposition 3.1. There are constants K ∈ R+, δ ∈ (0, δ0), and
η ∈ (0, η0) depending only on m, p, q and C2 such that

|v(3)(x, t)| ≤ K

x− ζ(t)
in Rδ,η.

Proof. Set

δ = min{2δ0

3
, 2sη0}, η = η0 −

δ

4s
,

and define

R(x, t) ≡
{

(x, t) ∈ R2 : |x− x| < λ

2
, t− λ

4s
< t ≤ t

}
for (x, t) ∈ Rδ,η, where s = a + ε and λ = x − ζ(t). Then (x, t) ∈ Rδ,η

implies that R(x, t) ⊂ R0. Since δ0 ≥ 3δ
2
, λ < δ and ζ is nonincreasing,

we have

t0 − η0 = t0 − η − λ

4s
< t < t0 + η < t0 + η0

and

x− λ

2
= x− x + ζ(t)

2
=

x + ζ(t)

2
> ζ(t0 + η0)

ζ(t0 − η) + δ +
λ

2
< ζ(t0 − η0).
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Also observe that for each (x, t) ∈ Rδ,η, R(x, t) lies to the right of the
line x = ζ(t)+s(t− t). Next set x = λξ+x and t = λτ + t. The function

W (ξ, τ) ≡ vxx(λξ + x, λτ + t) = vxx(x, t)

satisfies the equation

Wτ =
{

M
v

λ
vp−2

x Wξ + (2M + p)vp−1
x W

}
ξ

+[2M(p− 2)vvp−3
x vxx −Mvp−1

x ]Wξ(3.2)

+λ[M(p− 2)(p− 3)vvp−4
x (vxx)

3 −Mvp−2
x (vxx)

2]

in the region

B ≡
{

(ξ, τ) ∈ R2 : |ξ| ≤ 1

2
,− 1

4s
< τ ≤ 0

}
,

and |W | ≤ C2 in B. In view of (2.7) and (2.8)

(a− ε)
1

p−1
x− ζ(t)

λ
≤ v(x, t)

λ
≤ (a + ε)

1
p−1

x− ζ(t)

λ

and

ζ(t) ≤ ζ(t) ≤ ζ(t) + s(t− t) ≤ ζ(t) +
λ

4
.

Therefore

λ

4
= x− λ

2
− ζ(t)− λ

4
≤ x− ζ(t) ≤ x +

λ

2
− ζ(t) =

3λ

2

which implies

(a− ε)
1

p−1

4
≤ v

λ
≤ 3(a + ε)

1
p−1

2
.

Hence by (2.5) equation (3.2) is uniformly parabolic in B. Moreover,
it follows from Proposition 2.2 that W satisfies all of the hypotheses
of Theorem 5.3.1 of [5]. Thus we conclude that there exists a constant
K = K(a, m, p, C2) > 0 such that∣∣∣∣ ∂

∂ξ
W (0, 0)

∣∣∣∣ ≤ K;

that is,

|v(3)(x, t)| ≤ K

λ
.

Since (x, t) ∈ Rδ,η is arbitrary, this proves the proposition.
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We now turn to the barrier construction. If γ ∈ (0, δ) we will use the
notation

Rγ
δ,η = Rγ

δ,η(t0) ≡ {(x, t) ∈ R2 : ζ(t)+γ ≤ x ≤ ζ(t)+δ, t0−η ≤ t ≤ t0+η}.

Proposition 3.2. Let Rδ1,η1 be the region constructed in the proof
of Proposition 2.2 with

(3.3) 0 < δ1 <
(p− 1)a

1
p−1

12M(p− 2)K
.

For (x, t) ∈ Rγ
δ1,η1

, let

(3.4) φγ(x, t) ≡ α

x− ζ(t)− γ/3
+

β

x− ζ∗(t)

where ζ∗ is given by (2.9), and α and β are positive constant less than
K/2. Then there exist δ ∈ (0, δ1) and η ∈ (0, η1) depending only on a,
m, p and C2 such that

L3(φγ) ≥ 0 in Rγ
δ,η

for all γ ∈ (0, δ).

Proof. Choose ε such that

(3.5) 0 < ε <
(p− 1)a

13p− 23
.

There exist δ2 ∈ (0, δ1) and η ∈ (0, η1) such that (2.5), (2.7) and (2.8)
hold in Rδ2,η. Fix γ ∈ (0, δ2). For (x, t) ∈ Rγ

δ2,η, we have

L3(φ3) =
α

(x− ζ − γ/3)2

{
ζ
′ − 2Mvvp−2

x

x− ζ − γ/3
+ A + B

}
+

α

(x− ζ∗)2

{
ζ∗

′ − 2Mvvp−2
x

x− ζ∗
+ A + B

}
− Cφ3

−D(φ3)
2 − Evp−3

x v3
xx −M(p− 2)(p− 3)(p− 4)vvp−5

x v4
xx

where A, B, C, D, E and M are as before.
From (2.7), together with the fact that x− ζ∗ ≥ x− ζ − γ/3 we have

v

x− ζ∗
≤ v

x− ζ − γ/3
≤ (a + ε)

1
p−1

x− ζ

x− ζ − γ/3
≤ (a + ε)

1
p−1

γ

γ − γ/3

=
3

2
(a + ε)

1
p−1 .
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From (3.3), we have

(3.6) Dα, Dβ <
DK

2
< DK ≤ (p− 1)a

4
+

(p− 1)ε

4
.

Then since |C| is bounded and from (2.5) and (2.7), we have

L3(φ3) ≥ α
Y 2

{
(p−1)a

2
− 3p+12M+1

2
ε− δ2(|C| − E Y

α
)
}

+ β
(x−ζ∗)2

{
(p−1)a

2
− 3p+12M−1

2
ε− δ2(|C| − E x−ζ∗

β
)
}

where Y = x−ζ−γ/3 and E = |E|vp−3
x v3

xx. Since ε satisfies (3.5) we can
choose δ = δ2(ε, a, m, p, C2) > 0 so small that L3(φ3) ≥ 0 in Rγ

δ,η.

Remark 3.1. From (3.6) the Proposition 3.2 will be true for any α, β ∈
(0, K).

Proposition 3.3. (Barrier Transformation). Let δ and η be as in
Proposition 3.2 with the additional restriction that

(3.7) η <
δ

6ε
,

where ε is as in Proposition 3.2. Suppose that for some nonnegative
constant β

(3.8) v(3)(x, t) ≤ α

x− ζ(t)
+

β

x− ζ∗(t)
in Rδ,η.

Then v(3) also satisfies

(3.9) v(3)(x, t) ≤ 2α/3

x− ζ(t)
+

β + 2α/3

x− ζ∗(t)
in Rδ,η.

Proof. By Remark 3.1, for any γ ∈ (0, δ) since β + 2α/3 ≤ K the
function

φ3(x, t) =
2α/3

x− ζ − γ/3
+

β + 2α/3

x− ζ∗

satisfies L3(φ3) ≥ 0 in Rγ
δ,η. On the other hand, on the parabolic bound-

ary of Rγ
δ,η we have φ3 ≥ v(3). In fact, for t = t1 and ζ1 + γ ≤ x ≤ ζ1 + δ,

with ζ1 = ζ(t1), we have

φ3(x, t1) =
2α

x− ζ1 − γ/3
+

β + 2α/3

x− ζ1

>
4α/3

x− ζ1

+
β

x− ζ1

> v(3)(x, t1)
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while for x = ζ + δ and t1 ≤ t ≤ t2 we get, in view of (3.7),

φ3(ζ + δ, t) ≥ 2α/3

δ − γ/3
+

β

ζ + δ − ζ∗
+

2α/3

δ + 6εη

≥ 2α/3

δ
+

δ

ζ + δ − ζ∗
+

α/3

δ
≥ v(3)(ζ + δ, t).

Finally, for x = ζ + γ, t1 ≤ t ≤ t2 we have

φ3(ζ + δ, t) =
2α/3

γ − γ/3
+

β + 2α/3

ζ + γ − ζ∗
≥ α

γ
+

β

ζ + γ − ζ∗
≥ v(3)(ζ + γ, t).

By the comparison principle we get

φ3 ≥ v(3) in Rγ
δ.η

for any γ ∈ (0, δ), and (3.9) follows by letting γ ↓ 0.

Proposition 3.4. Let q = (x0, t0) be a point on the interface for
which (2.1) holds. Then there exist constants C3, δ and η depending
only on p, q and u such that∣∣∣∣∣

(
∂

∂x

)3

v

∣∣∣∣∣ ≤ C3 in Rδ,η/2.

Proof. By Proposition 3.1 we have, by letting α = 0,

v(3)(x, t) ≤ β

x− ζ∗
≤ 2β

εη
in Rδ,η/2.

Even though the equation (3.1) is not linear for v(3), a lower bound can
be obtained in a similar way.

4. Main Result

In this section we prove the interface is a C∞ function in (t∗,∞).
First we find the estimates of the derivatives of the form

v(j) ≡
(

∂

∂x

)j

v
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for j ≥ 4. For the porous medium equation, we have [2] the following
equation:

Ljv
(j) ≡ v

(j)
t − (m− 1)vv(j)

xx − (2 + j(m− 1))vxv
(j)
x − cmjvxxv

(j)

−
j∗∑
l=3

dl
mjv

(l)v(j+2−l) = 0

for j ≥ 3 in P [u], where j∗ = [j/2] + 1, and the cmj and dl
mj are

constants which depend only on their indices, but whose precise values
are irrelevant. Note that Lj is linear in v(j). On the other hand for
the p-Laplacian equation by a direct computation we have the following
equation for j ≥ 4,

Ljv
(j) = v

(j)
t −Mvvp−2

x v(j)
xx − ((j − 2)A + B)v(j)

x − Cpjv
(j)(4.1)

−F (v, vx, . . . , v
(j−1)) = 0

where A, B and M are as before, and Cpj involves only v and derivatives
of order < j. Note that equation (4.1) is linear in v(j). We also follow
the method in [2]. Hence our result is

Proposition 4.1. Let q = (x0, t0) be a point on the interface for
which (2.1) holds. For each integer j ≥ 2 there exist constants Cj, δ and
η depending only on j, m, p, q and u such that∣∣∣∣∣

(
∂

∂x

)j

v

∣∣∣∣∣ ≤ Cj in Rδ,η/2.

The proof also proceeds by induction on j. Suppose that q = (x0, t0)
is a point on the left interface for which (2.1) holds. Fix ε ∈ (0, a)
and take δ0 = δ0(ε) > 0 and η0 = η(ε) ∈ (0, t0 − t∗) such that R0 ≡
Rδ0,η0(t0) ⊂ P [u] and (2.6) holds. Thus we also have (2.7) and (2.8) in
R0. Assume that there are constants Ck ∈ R+ for k = 3, . . . , j − 1 such
that

(4.2) |v(k)| ≤ Ck on R0 for k = 2, . . . , j − 1.

Observe that by Propositions 2.1, 2.2 and 3.4, (4.2) holds for k = 2 and
k = 3.

By rescaling and interior estimates, we have

Proposition 4.2. There are constants K ∈ R+, δ ∈ (0, δ0), and
η ∈ (0, η0) depending only on p,q and Ck for k ∈ [2, j − 1] with j ≥ 4
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such that

|v(j)(x, t)| ≤ K

x− ζ(t)
in Rδ,η.

Proof. Set

δ = min{2δ0

3
, 2sη0},

η = η0 −
δ

4s
,

and define

R(x, t) ≡
{

(x, t) ∈ R2 : |x− x| < λ

2
, t− λ

4s
< t ≤ t

}
for (x, t) ∈ Rδ,η, where s = a + ε and λ = x − ζ(t). Then (x, t) ∈ Rδ,η

implies that R(x, t) ⊂ R0. Since δ0 ≥ 3δ
2
, λ < δ and ζ is nonincreasing,

we have

t0 − η0 = t0 − η − λ

4s
< t < t0 + η < t0 + η0

and

x− λ

2
= x− x + ζ(t)

2
=

x + ζ(t)

2
> ζ(t0 + η0)

ζ(t0 − η) + δ +
λ

2
< ζ(t0 − η0).

Also observe that for each (x, t) ∈ Rδ,η, R(x, t) lies to the right of the
line x = ζ(t)+s(t− t). Next set x = λξ+x and t = λτ + t. The function

V (j−1)(ξ, τ) ≡ v(j−1)(λξ + x, λτ + t) = v(j−1)(x, t)

satisfies the equation

V (j−1)
τ =

{
M

v

λ
vp−2

x V
(j−1)
ξ + [(j − 2)A + B]vp−1

x V (j−1)
}

ξ

−[Mvp−1
x + M(p− 2)vvp−3

x vxx + (j − 2)A + B]V
(j−1)
ξ(4.3)

+λ[Cpj − ((j − 2)Ax + Bx)]V
(j−1) + λF (v, . . . , v(j−2)

in the region

B ≡
{

(ξ, τ) ∈ R2 : |ξ| ≤ 1

2
,− 1

4s
< τ ≤ 0

}
,

and |V (j−1)| ≤ Cj−1 in B. In view of (2.7) and (2.8)

(a− ε)
1

p−1
x− ζ(t)

λ
≤ v(x, t)

λ
≤ (a + ε)

1
p−1

x− ζ(t)

λ
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and

ζ(t) ≤ ζ(t) ≤ ζ(t) + s(t− t) ≤ ζ(t) +
λ

4
.

Therefore

λ

4
= x− λ

2
− ζ(t)− λ

4
≤ x− ζ(t) ≤ x +

λ

2
− ζ(t) =

3λ

2

which implies

(a− ε)
1

p−1

4
≤ v

λ
≤ 3(a + ε)

1
p−1

2
.

Hence by (2.5) equation (3.2) is uniformly parabolic in B. Moreover,
it follows from Propositions 2.1, 2.2 and 3.4 and by (4.2) that V (j−1)

satisfies all of the hypotheses of Theorem 5.3.1 of [5]. Thus we conclude
that there exists a constant K = K(a, m, p, C1, . . . , Cj−1) > 0 such that∣∣∣∣ ∂

∂ξ
V (j−1)(0, 0)

∣∣∣∣ ≤ K;

that is,

|v(j)(x, t)| ≤ K

λ
.

Since (x, t) ∈ Rδ,η is arbitrary, this proves the proposition.

We now turn to the barrier construction. If γ ∈ (0, δ) we will use the
notation

Rγ
δ,η = Rγ

δ,η(t0) ≡ {(x, t) ∈ R2 : ζ(t)+γ ≤ x ≤ ζ(t)+δ, t0−η ≤ t ≤ t0+η}.

Proposition 4.3. Let Rδ1,η1 be the region constructed in the proof
of Proposition 2.2. For j ≥ 4 and (x, t) ∈ Rγ

δ1,η1
, let

(4.4) φj(x, t) ≡ α

x− ζ(t)− γ/3
+

β

x− ζ∗(t)

where ζ∗ is given by (2.9), and α and β are positive constant. Then there
exist δ ∈ (0, δ1) and η ∈ (0, η1) depending only on a, p, C1, . . . , Cj−1 such
that

Lj(φj) ≥ 0 in Rγ
δ,η

for all γ ∈ (0, δ).
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Proof. Choose ε such that

(4.5) 0 < ε <
(3M(j − 3) + (j − 2)p− 1)a

3M(j − 1) + (j − 2)p + 2
.

There exist δ2 ∈ (0, δ1) and η ∈ (0, η1) such that (2.5), (2.7) and (2.8)
hold in Rδ2,η. Fix γ ∈ (0, δ2). For (x, t) ∈ Rγ

δ2,η, we have

Lj(φj) =
α

A∗2

{
ζ
′ − 2Mvvp−2

x

A∗ + (j − 2)A + B − CpjA
∗ +

A∗2

α
F

}
+

β

(x− ζ∗)2

{
ζ∗

′ − 2Mvvp−2
x

x− ζ∗
+ (j − 2)A + B − Cpj(x− ζ∗)

}
where A, B, M , Cpj and F are as before and A∗ = x − ζ − γ/3. From
(2.7), together with the fact that x− ζ∗ ≥ x− ζ − γ/3 we have

v

x− ζ∗
≤ v

x− ζ − γ/3
≤ (a + ε)

1
p−1

x− ζ

x− ζ − γ/3
≤ (a + ε)

1
p−1

γ

γ − γ/3

=
3

2
(a + ε)

1
p−1 .

Then from (2.5), (2.7) and (4.2), we have

Lj(φj) ≥ α

A∗2{(3M(j − 3) + (j − 2)p− 1)a− (3M(j − 1)

+ (j − 2)p + 1)ε− δ2(|Cpj|+
δ

α
|F |}+

β

(x− ζ∗)2
{(3M(j − 3)

+ (j − 2)p− 1)a− (3M(j − 1) + (j − 2)p + 2)ε− δ2(|Cpj|}.
Since ε satisfies (4.5) we can choose δ = δ2(ε, a, m, p, C2) > 0 so small

that L3(φ3) ≥ 0 in Rγ
δ,η.

Hence we have the following proposition whose proof can be found in
[2].

Proposition 4.4. (Barrier Transformation). Let δ and η be as in
Proposition 4.3 with the additional restriction that

(4.6) η <
δ

6ε
,

where ε is as in Proposition 4.3. Suppose that for some nonnegative
constant β

(4.7) v(j)(x, t) ≤ α

x− ζ(t)
+

β

x− ζ∗(t)
in Rδ,η.
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Then v(j) also satisfies

(4.8) v(j)(x, t) ≤ 2α/3

x− ζ(t)
+

β + 2α/3

x− ζ∗(t)
in Rδ,η.

Then as in [2], we can prove the C∞ regularity of the interface.
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