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ON SOME p(x)-KIRCHHOFF TYPE EQUATIONS WITH

WEIGHTS

NGUYEN THANH CHUNG

Abstract. Consider a class of p(x)-Kirchhoff type equations of the form{
−M

(∫
Ω

1
p(x)

|∇u|p(x) dx
)
div

(
|∇u|p(x)−2∇u

)
= λV (x)|u|q(x)−2u in Ω,

u = 0 on ∂Ω,

where p(x), q(x) ∈ C(Ω) with 1 < p− := infΩ p(x) ≤ p+ := supΩ p(x) < N ,
M : R+ → R+ is a continuous function that may be degenerate at zero, λ is
a positive parameter. Using variational method, we obtain some existence
and multiplicity results for such problem in two cases when the weight

function V (x) may change sign or not.
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1. Introduction

In this paper, we are concerned with the following p(x)-Kirchhoff type equa-
tions{

−M
(∫

Ω
1

p(x) |∇u|
p(x) dx

)
div

(
|∇u|p(x)−2∇u

)
= λf(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a smooth bounded domain with boundary ∂Ω, p(x) ∈ C(Ω)
with 1 < p− := infΩ p(x) ≤ p+ := supΩ p(x) < N ,M : R+ → R+ is a continuous
function, f is a Carathéodory function having special structures, and λ is a
paramter.

Since the first equation in (1.1) contains an integral over Ω, it is no longer
a pointwise identity, and therefore it is often called nonlocal problem. This
problem models several physical and biological systems, where u describes a
process which depends on the average of itself, such as the population density, see
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[4]. Problem (1.1) is related to the stationary version of the Kirchhoff equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u
∂x2

= 0 (1.2)

presented by Kirchhoff in 1883, see [19]. This equation is an extension of the
classical d’Alembert’s wave equation by considering the effects of the changes
in the length of the string during the vibrations. The parameters in (1.2) have
the following meanings: L is the length of the string, h is the area of the cross
section, E is the Young modulus of thematerial, ρ is themass density, and P0 is
the initial tension.

In recent years, elliptic problems involving p-Kirchhoff type operators have
been studied in many papers, we refer to some interesting works [2, 5, 9, 21,
22, 25, 26], in which the authors have used different methods to get the exis-
tence of solutions for (1.1) in the case when p(x) = p is a constant. To our
knowledge, the study of p(x)-Kirchhoff type problems was firstly done by G. Dai
et al. in the papers [11, 12]. It is not difficult to see that the p(x)-Laplacian
possesses more complicated nonlinearities than p-Laplacian, for example it is
inhomogeneous. The study of differential equations and variational problems
involving p(x)-growth conditions is a consequence of their applications. Ma-
terials requiring such more advanced theory have been studied experimentally
since the middle of last century. In [11], the authors established the existence
of infinitely many distinct positive solutions for problem (1.1) in the special
case M(t) = a + bt. In [12], the authors considered the problem in the case
when M : R+ → R is a continuous and non-descreasing function, satisfying the
well-known condition:

(M0) there exists m0 > 0 such that M(t) ≥ m0 for all t ≥ 0,

which plays an enssential role in the arguments, see further papers [2, 3, 6, 10,
21, 22]. There have been some authors improving (M0) in the sense that the
Kirchhoff function M may be degenerate at zero, see for example [7, 8, 9, 15].
In this paper, we assume that the Kirchhoff function M satisfies the following
hypotheses:

(M1) There exist m2 ≥ m1 > 0 and 1 < α ≤ β < min{ N
p+ ,

Np−

p+(N−p−)} such

that
m1t

α−1 ≤M(t) ≤ m2t
β−1

for all t ∈ R+;
(M2) For all t ∈ R+, it holds that

M̂(t) ≥M(t)t

where M̂(t) =
∫ t

0
M(s) ds.

Motivated by the ideas in [7, 8, 9, 15] and the results in [18, 23] for the
p(x)-Laplacian, i.e., M(t) ≡ 1, in this paper, we consider problem (1.1) with
f(x, u) = λV (x)|u|q(x)−2u in two cases when the weight function V (x) may
change sign or not. The results in this work suplement or complement our
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earlier ones in [7], in which we studied the problem in the case when the concave
and convex nonlinearities were combined and the weight function did not change
sign.

First, we consider the case when the parameter λ = 1 and f(x, u) = V (x)|u|q(x)−2u

in which the weight function V (x) does not change sign. Problem (1.1) then
becomes −M

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
div

(
|∇u|p(x)−2∇u

)
= V (x)|u|q(x)−2u in Ω,

u = 0 on ∂Ω.

(1.3)

More exactly, V : Ω → [0,+∞) belongs to L∞(Ω) and satisfies

(V1) There exist an x0 ∈ Ω and two positive constants r and R with 0 < r < R

such that BR(x0) ⊂ Ω and V (x) = 0 for x ∈ BR(x0)\Br(x0) while

V (x) > 0 for x ∈ Ω\BR(x0)\Br(x0),

and the function q is assumed to satisfy

(Q1) q ∈ C+(Ω), 1 < q(x) < p∗(x) for all x ∈ Ω;
(Q2) Either

max
x∈Br(x0)

q(x) < p−α ≤ p−β ≤ p+α ≤ p+β < min
x∈Ω\BR(x0)

q(x)

or

max
x∈Ω\BR(x0)

q(x) < p−α ≤ p−β ≤ p+α ≤ p+β < min
x∈Br(x0)

q(x),

where the numbers α and β are given by (M1).

Definition 1.1. A function u ∈ X = W
1,p(x)
0 (Ω) is said to be a weak solution

of problem (1.3) if and only if

M

(∫
Ω

1

p(x)
|∇u|p(x) dx

)∫
Ω

|∇u|p(x)−2∇u∇v dx−
∫
Ω

V (x)|u|q(x)−2uv dx = 0

for all v ∈ X.

Our main result concerning problem (1.3) is given by the following theorem.

Theorem 1.2. Assume that the conditions (M1)-(M2), (V1) and (Q1)-(Q2) are
satisfied. Then there exists a positive constant ϵ0 such that problem (1.3) has at
least two non-trivial non-negative weak solutions, provided that |V |L∞(Ω) < ϵ0.

It should be noticed that Theorem 1.2 is only true when q(x) is a non-constant
function while p(x) may be a constant. If p(x) = p is a constant then it follows
from (Q2) that α = β.

Next, we consider problem (1.1) in the case when f(x, u) = λV (x)|u|q(x)−2u,
in which V (x) is a sign changing weight function, that is,{

−M
(∫

Ω
1

p(x)
|∇u|p(x) dx

)
div

(
|∇u|p(x)−2∇u

)
= λV (x)|u|q(x)−2u in Ω,

u = 0 on ∂Ω.
(1.4)
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More exactly, we study the existence of solutions for (1.4) under the hypotheses
(M1), (M2) and

(V2) V (x) ∈ L
s(x)
α (Ω) with s(x) ∈ C+(Ω), s(x) > αN for all x ∈ Ω, and

V (x) > 0 in Ω0 ⊂ Ω with |Ω0| > 0, α is given by (M1);

and the function q(x) ∈ C+(Ω) is assumed to satisfy the following condition

(Q3) 1 < q(x) < p(x) < N for all x ∈ Ω.

As we shall see in Section 4, due to the hypothesis (Q3), we cannot use the
mountain pass theorem [1] in order to get the solutions for problem (1.4) as in
Theorem 1.2. We emphasize that this is the main different point between two
problems (1.3) and (1.4).

Definition 1.3. A function u ∈ X = W
1,p(x)
0 (Ω) is said to be a weak solution

of problem (1.4) if and only if

M

(∫
Ω

1

p(x)
|∇u|p(x) dx

)∫
Ω

|∇u|p(x)−2∇u∇v dx− λ

∫
Ω

V (x)|u|q(x)−2uv dx = 0

for all v ∈ X.

Our main result concerning problem (1.4) in this case is given by the following
theorem.

Theorem 1.4. Assume that the conditions (M1)-(M2), (V2) and (Q3) are sat-
isfied. Then there exists a positive constant λ∗ such that for any λ ∈ (0, λ∗),
problem (1.4) has at least one non-trivial non-negative weak solution, i.e., any
λ ∈ (0, λ∗) is an eigenvalue of eigenvalue problem (1.4).

Our paper is organized as follows. In the next section, we shall recall some
useful concepts and properties on the generalized Lebesgue-Sobolev spaces. Sec-
tion 3 is devoted to the proof of Theorem 1.2 while we shall present the proof of
Theorem 1.4 in Section 4.

2. Preliminaries

We recall in what follows some definitions and basic properties of the gen-
eralized Lebesgue-Sobolev spaces Lp(x) (Ω) and W 1,p(x) (Ω) where Ω is an open
subset of RN . In that context, we refer to the book of Musielak [24] and the
papers of Kováčik and Rákosńık [20] and Fan et al. [16, 17]. Set

C+(Ω) := {h : h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define h+ = supx∈Ω h(x) and h
− = infx∈Ω h(x). For any

p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : a measurable real-valued function such that

∫
Ω

|u(x)|p(x) dx < ∞
}
.
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We recall the following so-called Luxemburg norm on this space defined by the
formula

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)µ
∣∣∣∣p(x) dx ≤ 1

}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many
respects: they are Banach spaces, the Hölder inequality holds, they are reflexive
if and only if 1 < p− ≤ p+ < ∞ and continuous functions are dense if p+ < ∞.
The inclusion between Lebesgue spaces also generalizes naturally: if 0 < |Ω| <∞
and p1, p2 are variable exponents so that p1(x) ≤ p2(x) a.e. x ∈ Ω then there

exists a continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω). We denote by Lp′(x)(Ω)
the conjugate space of Lp(x)(Ω), where 1

p(x) +
1

p′(x) = 1. For any u ∈ Lp(x)(Ω)

and v ∈ Lp′(x)(Ω) the Hölder inequality∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p′)−

)
|u|p(x)|v|p′(x)

holds true.
Moreover, if h1, h2 and h3 : Ω → (1,∞) are three Lipschitz continuous

functions such that 1
h1(x)

+ 1
h2(x)

+ 1
h3(x)

= 1, then for any u ∈ Lh1(x)(Ω),

v ∈ Lh2(x)(Ω) and w ∈ Lh3(x)(Ω), the following inequality holds:∣∣∣∣∫
Ω

uvw dx

∣∣∣∣ ≤ (
1

h−1
+

1

h−2
+

1

h−3

)
|u|h1(x)|v|h2(x)|w|h3(x).

An important role in manipulating the generalized Lebesgue-Sobolev spaces
is played by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) :

Lp(x)(Ω) → R defined by

ρp(x)(u) =

∫
Ω

|u|p(x) dx.

Proposition 2.1 ([17]). If u ∈ Lp(x)(Ω) and p+ < ∞ then the following rela-
tions hold

|u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x) (2.1)

provided that |u|p(x) > 1 while

|u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x) (2.2)

provided that |u|p(x) < 1 and

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0. (2.3)

Proposition 2.2 ([18]). Let p and q be measurable functions such that p ∈
L∞(Ω) and 1 ≤ p(x)q(x) ≤ ∞ for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u ̸= 0. Then
the following relations hold

|u|p
+

p(x)q(x) ≤
∣∣∣|u|p(x)∣∣∣

q(x)
≤ |u|p

−

p(x)q(x) (2.4)
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provided that |u|p(x) ≤ 1 while

|u|p
−

p(x)q(x) ≤
∣∣∣|u|p(x)∣∣∣

q(x)
≤ |u|p

+

p(x)q(x) (2.5)

provided that |u|p(x) ≥ 1. In particular, if p(x) = p is a constant, then∣∣∣|u|p∣∣∣
q(x)

= |u|ppq(x). (2.6)

In this paper, we assume that p ∈ C log
+ (Ω), where C log

+ (Ω) is the space of all the

functions of C+(Ω) which are logarithmic Hölder continuous, that is, there exists
R > 0 such that for all x, y ∈ Ω with 0 < |x− y| ≤ 1

2 , |p(x)− p(y)| ≤ − R
log|x−y| ,

see [13, 16]. We define the space W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the
norm

∥u∥ = |∇u|p(x).

Proposition 2.3 ([17, 18]). The space
(
W

1,p(x)
0 (Ω), ∥.∥

)
is a separable and

Banach space. Moreover, if q ∈ C+(Ω) and q(x) < p∗(x) for all x ∈ Ω then the

embedding W
1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) is compact and continuous, where p∗(x) =

Np(x)
N−p(x) if p(x) < N or p∗(x) = ∞ if p(x) ≥ N .

3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2, which is essentially
based on the mountain pass theorem [1] combined with the Ekeland variational
principle [14].

Let us define the functional J : X =W
1,p(x)
0 (Ω) → R by the formula

J(u) = Φ(u)−Ψ1(u), (3.1)

where

Φ(u) = M̂

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
, Ψ1(u) =

∫
Ω

V (x)

q(x)
|u|q(x) dx, (3.2)

where M̂(t) =
∫ t

0
M(s) ds. Then, the functional J associated with problem (1.1)

is well defined and of C1 class on X. Moreover, we have

J ′(u)(v)

=M

(∫
Ω

1

p(x)
|∇u|p(x) dx

)∫
Ω

|∇u|p(x)−2∇u · ∇v dx−
∫
Ω

V (x)|u|q(x)−2uv dx

= Φ′(u)(v)−Ψ′
1(u)(v)

for all u, v ∈ X. Thus, weak solutions of problem (1.3) are exactly the ciritical
points of the functional J . Due to the conditions (M1) and (Q1), we can show
that J is weakly lower semi-continuous in X. The following lemma plays an
essential role in our arguments.

Lemma 3.1. The following assertions hold:
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(i) There exists ϵ0 > 0 such that for any |V |L∞(Ω) < ϵ0, there exist ρ1, γ1 >
0 for which J(u) ≥ γ1, ∀u ∈ X with ∥u∥ = ρ1;

(ii) There exists φ1 ∈ X, φ1 ≥ 0, φ1 ̸= 0 such that limt→∞ J(tφ1) = −∞
(iii) There exists ψ1 ∈ X, ψ1 ≥ 0, ψ1 ̸= 0 such that J(tψ1) < 0 for all t > 0

small enough.

Proof. We shall prove Lemma 3.1 in details for the case

max
x∈Br(x0)

q(x) < p−α ≤ p−β ≤ p+α ≤ p+β < min
x∈Ω\BR(x0)

q(x),

the remaining case is similarly proved.
(i) Let us define the function q1 : Br(x0) → (1,+∞) by q1(x) = q(x) for all

x ∈ Br(x0) and the function q2 : Ω\BR(x0) → (1,+∞) by q2(x) = q(x) for all

x ∈ Ω\BR(x0). We denote q−1 = min
x∈Br(x0)

q1(x), q
+
1 = max

x∈Br(x0)
q1(x),

q−2 = min
x∈Ω\BR(x0)

q2(x) and q+2 = max
x∈Ω\BR(x0)

q2(x). By the conditions

(Q1) and (Q2),

1 < q−1 ≤ q+1 < p−α ≤ p−β ≤ p+α ≤ p+β < q−2 ≤ q+2 < p⋆(x) for all x ∈ Ω, (3.3)

which helps us to deduce thatX is continuously embedded in Lq±i (Ω) for i = 1, 2.
Then there exists a positive constant c1 such that∫

Ω

|u|q
±
i dx ≤ c1∥u∥q

±
i , ∀u ∈ X and i = 1, 2. (3.4)

From (3.4), there exist two positive constants c2, c3 such that∫
Br(x0)

|u|q1(x) dx ≤
∫
Br(x0)

|u|q
−
1 dx+

∫
Br(x0)

|u|q
+
1 dx

≤
∫
Ω

|u|q
−
1 dx+

∫
Ω

|u|q
+
1 dx

≤ c2

(
∥u∥q

−
1 + ∥u∥q

+
1

)
, ∀u ∈ X,

(3.5)

and ∫
Ω\BR(x0)

|u|q2(x) dx ≤
∫
Ω\BR(x0)

|u|q
−
2 dx+

∫
Ω\BR(x0)

|u|q
+
2 | dx

≤
∫
Ω

|u|q
−
2 dx+

∫
Ω

|u|q
+
2 dx

≤ c3

(
∥u∥q

−
2 + ∥u∥q

+
2

)
, ∀u ∈ X.

(3.6)
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Using the hypothesis (M1), relations (3.5) and (3.6) give us

J(u) = M̂

(∫
Ω

1

p(x)
|∇u|p(x)

dx

)
−
∫
Ω

V (x)

q(x)
|u|q(x)

dx

≥
m1

α

(∫
Ω

1

p(x)
|∇u|p(x)

dx

)α

−
∫
Br(x0)

V (x)

q(x)
|u|q(x)

dx −
∫
Ω\BR(x0)

V (x)

q(x)
|u|q(x)

dx

≥
m1

αp+
∥u∥αp+ −

c4|V |L∞(Ω)

q−

(
∥u∥q

−
1 + ∥u∥q

+
1 + ∥u∥q

−
2 + ∥u∥q

+
2

)
≥
[

m1

2αp+
∥u∥αp+ −

c4

q−
|V |L∞(Ω)

(
∥u∥q

−
1 + ∥u∥q

+
1

)]
+

[
m1

2αp+
∥u∥αp+ −

c4

q−
|V |L∞(Ω)

(
∥u∥q

−
2 + ∥u∥q

+
2

)]

(3.7)

for all u ∈ X with ∥u∥ < 1. Since the function g : [0, 1] → R defined by

g(t) =
m1

2αp+
− c4
q−
tq

+
2 −αp+

− c4
q−
tq

−
2 −αp+

(3.8)

is positive in a neighbourhood of the origin, it follows that there exists ρ1 ∈ (0, 1)
such that g(ρ1) > 0. On the other hand, defining

ϵ0 = min

{
1,

m1q
−

4αp+c4
min{ραp

+−q−1
1 , ρ

αp+−q+1
1 }

}
(3.9)

we deduce that, for any |V |L∞(Ω) < ϵ0, there exists γ1 > 0 such that for any
u ∈ X with ∥u∥ = ρ1 we have J(u) ≥ γ1. (ii) Let ψ1 ∈ C∞

0 (Ω), ψ1 ≥ 0 and there
exist x1 ∈ Ω\BR(x0) and ϵ > 0 such that for any x ∈ Bϵ(x1) ⊂ (Ω\BR(x0)) we
have ψ1(x) > 0. For any t > 1, we have

J(tψ1) = M̂

(∫
Ω

1

p(x)
|∇tψ1|p(x) dx

)
−

∫
Ω

V (x)

q(x)
|tψ1|q(x) dx

≤
m2

β

(∫
Ω

1

p(x)
|∇tψ1|p(x) dx

)β

−
∫
Ω\BR(x0)

V (x)

q(x)
|tψ1(x)|q(x) dx

≤
m2

β
tβp

+
(∫

Ω

1

p(x)
|∇ψ1|p(x) dx

)β

− tq
−
2

∫
Ω\BR(x0)

V (x)

q(x)
|ψ1(x)|q(x) dx.

(3.10)

Since βp+ < q−2 we infer that limt→∞ J(tψ1) = −∞. (iii) Let φ1 ∈ C∞
0 (Ω),

φ1 ≥ 0 and there exist x2 ∈ Br(x0) and ϵ > 0 such that for any x ∈ Bϵ(x2) ⊂
Br(x0) we have φ1(x) > 0. Letting 0 < t < 1 we find

J(tφ1) = M̂

(∫
Ω

1

p(x)
|∇tφ1|p(x) dx

)
−

∫
Ω

V (x)

q(x)
|tφ1|q(x) dx

≤ m2

β

(∫
Ω

1

p(x)
|∇tφ1|p(x) dx

)β

−
∫
Br(x0)

V (x)

q(x)
|tφ1|q(x) dx

≤ m2

β
tβp

−
(∫

Ω

1

p(x)
|∇φ1|p(x) dx

)β

− tq
+
1

∫
Br(x0)

V (x)

q(x)
|φ1|q(x) dx.

(3.11)
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Obviously, we have J(tφ1) < 0 for any 0 < t < δ
1

βp−−q
+
1 , where

0 < δ < min

1,

∫
Br(x0)

V (x)
q(x) |φ1|q(x)dx

m2

β

(∫
Ω

1
p(x) |∇φ1|p(x)dx

)β

 .

The proof of Lemma 3.1 is complete. �

Lemma 3.2. The functional J satisfies the Palais-Smale condition in X.

Proof. Let {um} ⊂ X be such that

J(um) → c, J ′(um) → 0 in X∗ as m→ ∞, (3.12)

where X∗ is the dual space of X.
We shall prove that {um} is bounded in X. In order to do that, we assume by

contradiction that passing if necessary to a subsequence, still denoted by {um},
we have ∥um∥ → ∞ as m → ∞. By (3.12) and (M1)-(M2), for m large enough
and |V |L∞(Ω) < ϵ0, we have

1 + c + ∥um∥

≥ J(um) −
1

q−2
J
′
(um)(um)

≥ M

(∫
Ω

1

p(x)
|∇um|p(x)

dx

)∫
Ω

1

p(x)
|∇um|p(x)

dx −
∫
Ω

V (x)

q(x)
|um|q(x)

dx

−
1

q−2
M

(∫
Ω

1

p(x)
|∇um|p(x)

dx

)∫
Ω

|∇um|p(x)
dx +

1

q−2

∫
Ω

V (x)|um|q(x)
dx

≥
m1

α(p+)α−1

( 1

p+
−

1

q−2

)(∫
Ω

|∇um|p(x)
dx

)α
+

∫
Br(x0)

V (x)
( 1

q−2
−

1

q1(x)

)
|um|q1(x)

dx

≥
m1

α(p+)α−1

( 1

p+
−

1

q−2

)
∥um∥αp− − ϵ0

( 1

q−1
−

1

q−2

)(
∥um∥q

−
1 + ∥um∥q

+
1
)

(3.13)

Dividing the above inequality by ∥um∥αp−
taking into account that (3.3) holds

true and passing to the limit as m → ∞ we obtain a contradiction. It follows
that {um} is bounded in X. Thus, there exists u1 ∈ X such that passing to
a subsequence, still denoted by {um}, it converges weakly to u1 in X. Then
{∥um − u∥} is bounded. By (3.3), the embedding from X to the space Lq(x)(Ω)
is compact. Then, using the Hölder inequality, Propositions 2.1-2.3, we have

lim
m→∞

∫
Ω

V (x)|um|q(x)−2um(um − u) dx = 0. (3.14)

This fact and relation (3.12) yield

lim
m→∞

Φ′(um)(um − u) = 0. (3.15)

Since {um} is bounded in X, passing to a subsequence, if necessary, we may
assume that ∫

Ω

1

p(x)
|∇um|p(x) dx→ t0 ≥ 0 as m→ ∞.
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If t0 = 0 then {um} converges strongly to u = 0 in X and the proof is finished.
If t0 > 0 then we deduce by the continuity of M that

M
(∫

Ω

1

p(x)
|∇um|p(x) dx

)
→M(t0) as m→ ∞.

Thus, by (M1), for sufficiently large m, we have

0 < c5 ≤M
(∫

Ω

1

p(x)
|∇um|p(x) dx

)
≤ c6. (3.16)

From (3.15), (3.16), it follows that

lim
m→∞

∫
Ω

|∇um|p(x)−2(∇um −∇u) dx = 0.

Thus, {um} converges strongly to u in X and the functional J satisfies the
Palais-Smale condition. �

Proof of Theorem 1.2. By Lemmas 3.1 and 3.2, all assumptions of the mountain
pass theorem in [1] are satisfied. Then we deduce u1 as a non-trivial critical
point of the functional J with J(u1) = c and thus a non-trivial weak solution of
problem (1.3).

We now prove that there exists a second weak solution u2 ∈ X such that u2 ̸=
u1. Indeed, let ϵ0 as in the proof of Lemma 3.1(i) and assume that |V |L∞(Ω) < ϵ0.
By Lemma 3.1(i), it follows that on the boundary of the ball centered at the
origin and of radius ρ1 in X, denoted by Bρ1(0) = {u ∈ X : ∥u∥ < ρ1}, we have

inf
u∈∂Bρ1 (0)

J(u) > 0. (3.17)

On the other hand, by Lemma 3.1(ii), there exists φ1 ∈ X such that J(tφ1) < 0
for all t > 0 small enough. Moreover, from (3.7), the functional J is bouned
from below on Bρ1(0). It follows that

−∞ < c := inf
u∈Bρ1 (0)

J(u) < 0.

Applying the Ekeland variational principle in [14] to the functional J : Bρ1(0) →
R, it follows that there exists uϵ ∈ Bρ1(0) such that

J(uϵ) < inf
u∈Bρ1 (0)

J(u) + ϵ,

J(uϵ) < J(u) + ϵ∥u− uϵ∥, u ̸= uϵ.

By Lemma 3.1, we have

inf
u∈∂Bρ1 (0)

J(u) ≥ γ1 > 0 and inf
u∈Bρ1 (0)

J(u) < 0.

Let us choose ϵ > 0 such that

0 < ϵ < inf
u∈∂Bρ1 (0)

J(u)− inf
u∈Bρ1 (0)

J(u).

Then, J(uϵ) < infu∈∂Bρ1 (0)
J(u) and thus, uϵ ∈ Bρ1(0).
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Now, we define the functional I : Bρ1(0) → R by I(u) = J(u) + ϵ∥u− uϵ∥. It
is clear that uϵ is a minimum point of I and thus

I(uϵ + tv)− I(uϵ)

t
≥ 0

for all t > 0 small enough and all v ∈ Bρ1(0). The above information shows that

J(uϵ + tv)− J(uϵ)

t
+ ϵ∥v∥ ≥ 0.

Letting t→ 0+, we deduce that

⟨J ′(uϵ), v⟩ ≥ −ϵ∥v∥.
It should be noticed that −v also belongs to Bρ1(0), so replacing v by −v, we
get

⟨J ′(uϵ),−v⟩ ≥ −ϵ∥ − v∥
or

⟨J ′(uϵ), v⟩ ≤ ϵ∥v∥,
which helps us to deduce that ∥J ′(uϵ)∥X∗ ≤ ϵ. Therefore, there exists a sequence
{um} ⊂ Bρ1(0) such that

J(um) → c = inf
u∈Bρ1 (0)

J(u) < 0 and J ′(um) → 0 in X∗ as m→ ∞. (3.18)

From Lemma 3.2, the sequence {um} converges strongly to u2 as m → ∞.
Moreover, since J ∈ C1(X,R), by (3.17) it follows that J(u2) = c and J ′(u2) = 0.
Thus, u2 is a non-trivial weak solution of problem (1.2).

Finally, we point out the fact that u1 ̸= u2 since J(u1) = c > 0 > c = J(u2).
Moreover, since J(u) = J(|u|), problem (1.3) has at least two non-trivial non-
negative weak solutions. The proof of Theorem 1.2 is complete. �

4. Proof of Theorem 1.4

In this section, assume that we are under the hypotheses of Theorem 1.4, we
shall prove Theorem 1.4 using the Ekeland variational principle [14]. For each

λ ∈ R, define the functional Jλ : X =W
1,p(x)
0 (Ω) → R by

Jλ(u) = Φ(u)− λΨ2(u),

where

Φ(u) = M̂

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
, Ψ2(u) =

∫
Ω

V (x)

q(x)
|u|q(x) dx. (4.1)

From (V2), (2.4) and (2.5), it is clear that for all u ∈ X,

|Ψ2(u)| ≤
1

q−
|V | s(x)

α
||u|q(x)| s(x)

s(x)−α

≤


1
q− |V | s(x)

α
|u|q

−

s(x)q(x)
s(x)−α

if |u|q(x) ≤ 1,

1
q− |V | s(x)

α
|u|q

+

s(x)q(x)
s(x)−α

if |u|q(x) ≥ 1.
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On the other hand, by (V2) and (Q3), we have
s(x)q(x)
s(x)−α < p∗(x) and s(x)q(x)

s(x)−αq(x) <

p∗(x) for all x ∈ Ω and thus the embeddings X ↪→ L
s(x)q(x)
s(x)−α (Ω) and X ↪→

L
s(x)q(x)

s(x)−αq(x) (Ω) are continuous and compact. For these reasons, we can use the
similar arguments as in [18, Proposition 2] in order to show that the functional
Jλ is well-defined. Moreover, Jλ is of C1 class in X and

J ′
λ(u)(v) =M

(∫
Ω

1

p(x)
|∇u|p(x) dx

)∫
Ω
|∇u|p(x)−2∇u · ∇v dx− λ

∫
Ω
V (x)|u|q(x)−2uv dx

= Φ′(u)(v)− λΨ′
2(u)(v)

for all u, v ∈ X. Thus, weak solutions of problem (1.4) are exactly the ciritical
points of the functional Jλ.

Lemma 4.1. For any ρ2 ∈ (0, 1), there exist λ∗ > 0 and γ2 > 0 such that for
all u ∈ X with ∥u∥ = ρ2,

Jλ(u) ≥ γ2 > 0 for all λ ∈ (0, λ∗).

Proof. Since the embedding X ↪→ L
s(x)q(x)
s(x)−α (Ω) is continuous, there exists a pos-

itive constant c7 such that

|u| s(x)q(x)
s(x)−α

≤ c7∥u∥, ∀u ∈ X. (4.2)

Now, let us assume that ∥u∥ < min{1, 1
c7
}, where c7 is the positive constant

from above. Then we have |u| s(x)q(x)
s(x)−α

< 1. Using relations (2.2), (4.2), the

condition (M1) and the Hölder inequality, we deduce that for any u ∈ X with
∥u∥ = ρ2 ∈ (0, 1) the following inequalities hold true

Jλ(u) ≥ M̂

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
− λ

q−

∫
Ω

V (x)|u|q(x) dx

≥ m1

α(p+)α
∥u∥αp

+

− λ

q−
|V | s(x)

α
||u|q(x)| s(x)

s(x)−α

≥ m1

α(p+)α
∥u∥αp

+

− λ

q−
|V | s(x)

α
|u|q

−

s(x)q(x)
s(x)−α

≥ m1

α(p+)α
∥u∥αp

+

− λ

q−
|V | s(x)

α
cq

−

7 ∥u∥q
−

= ρq
−

2

( m1

α(p+)α
ραp

+−q−

2 − λ

q−
cq

−

7 |V | s(x)
α

)
.

(4.3)

By (Q3) we have q− ≤ q+ < p− ≤ p+ < αp+. So, if we take

λ∗ :=
m1ρ

αp+−q−

2

2α(p+)α
.

q−

cq
−

7 |V | s(x)
α

, (4.4)

then for any λ ∈ (0, λ∗) and u ∈ X with ∥u∥ = ρ2, there exists γ2 > 0 such that
Jλ(u) ≥ γ2 > 0. The proof of the Lemma 4.1 is complete. �
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Lemma 4.2. For any λ ∈ (0, λ∗), where λ∗ is given by (4.4), there exists ψ2 ∈ X
such that ψ2 ≥ 0, ψ2 ̸= 0 and Jλ(tψ2) < 0 for all t > 0 smaller than a certain
value depending on λ.

Proof. From (Q3) we have q(x) < βp(x) for all x ∈ Ω0, where Ω0 is given by
(V2). In the sequel, we use the notation q−0 = infΩ0 q(x), q

+
0 = supΩ0

q(x),

p−0 = infΩ0 p(x), and p
+
0 = supΩ0

p(x). Let δ0 > 0 be such that q−0 + δ0 < βp−0 .

Since q ∈ C(Ω0), there exists an open set Ω1 ⊂ Ω0 such that |q(x) − q−0 | < δ0
for all x ∈ Ω1. It follows that q(x) < q−0 + δ0 < βp−0 for all x ∈ Ω1.

Let ψ2 ∈ C∞
0 (Ω) such that supp(ψ2) ⊂ Ω1 ⊂ Ω0, ψ2 = 1 in a subset Ω′

1 ⊂
supp(ψ2), 0 ≤ ψ2 ≤ 1 in Ω1. Then, using (M1) we have

Jλ(tψ2) = M̂

(∫
Ω

1

p(x)
|∇tψ2|p(x) dx

)
− λ

∫
Ω

V (x)

q(x)
|tψ2|q(x) dx

≤ m2

β

(∫
Ω

1

p(x)
|∇tψ2|p(x) dx

)β

− λ

∫
Ω1

V (x)

q(x)
tq(x)|ψ2|q(x) dx

≤ tβp
−
0 m2

β(p−0 )
β

(∫
Ω0

|∇ψ2|p(x) dx
)β

− λtq
−
0 +δ0

q+0

∫
Ω1

V (x)|ψ2|q(x) dx.

(4.5)

Therefore, Jλ(tψ2) < 0 for 0 < t < δ
1

βp
−
0 −q

−
0 −δ0 with

0 < δ < min

1,
λβ(p−0 )

β

m2q
+
0

.

∫
Ω1
V (x)|ψ2|q(x) dx(∫

Ω0
|∇ψ2|p(x) dx

)β

 .

Finally, we shall point that ∫
Ω0

|∇ψ2|p(x) dx > 0.

In fact, due to the choice of ψ2, if
∫
Ω0

|∇ψ2|p(x) dx = 0 then
∫
Ω
|∇ψ2|p(x)dx = 0.

Using (2.3), we deduce that |∇ψ2| = 0 and consequently ψ2 = 0 in Ω, which is
a contradiction. The proof of Lemma 4.2 is complete. �

Proof of Theorem 1.4. Let λ∗ > 0 be defined by (4.4) and λ ∈ (0, λ∗). By
Lemma 4.1, it follows that on the boundary of the ball centered at the origin
and of radius ρ2 in X, denoted by Bρ2

(0), we have

inf
∂Bρ2 (0)

Jλ(u) > 0.

On the other hand, by Lemma 4.2, there exists ψ2 ∈ X such that Jλ(tψ2) < 0 for
all t > 0 small enough. Moreover, relation (4.3) implies that for any u ∈ Bρ2(0)
we have

Jλ(u) ≥
m1

α(p+)α
∥u∥αp

+

− λ

q−
cq

−

7 |V | s(x)
α

∥u∥q
−
.
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It follows that

−∞ < c := inf
Bρ2 (0)

Jλ(u) < 0.

Using the Ekeland variational principle [14] and the similar arguments as those
used in the proof of Theorem 1.1, we can deduce that there exists a sequence
{um} ⊂ Bρ2

(0) such that

Jλ(um) → c, J ′
λ(um) → 0. (4.6)

It is clear that {um} is bounded in X. Thus, there exists u ∈ X such that, up

to a subsequence, {um} converges weakly to u in X. Since s(x)q(x)
s(x)−αq(x) < p∗(x)

for all x ∈ Ω we deduce that X is compactly embedded in L
s(x)q(x)

s(x)−αq(x) (Ω), hence

the sequence {um} converges strongly to u in L
s(x)q(x)

s(x)−αq(x) (Ω). Using the Hölder
inequality, we have∫

Ω
V (x)|um|q(x)−2um(um − u) dx ≤ |V | s(x)

α

||um|q(x)−2um(um − u)| s(x)q(x)
s(x)−α

(4.7)

≤ |V | s(x)
α

||um|q(x)−2um| q(x)
q(x)−1

|um − u| s(x)q(x)
s(x)−αq(x)

.

Now, if ||um|q(x)−2um| q(x)
q(x)−1

> 1, then we get ||um|q(x)−2um| q(x)
q(x)−1

≤ |um|q
+

q(x).

The compact embedding X ↪→ L
s(x)q(x)

s(x)−αq(x) (Ω) ensures that

lim
m→∞

∫
Ω

V (x)|um|q(x)−2um(um − u) dx = 0. (4.8)

Relation (4.6) yields

lim
m→∞

J ′
λ(um)(um − u) = 0.

Using the above information, we also obtain relation (3.15) and thus, {um}
converges strongly to some u in X. So, by (4.6), Jλ(u) = c < 0 and J ′

λ(u) = 0.
It is clear that Jλ(|u|) = Jλ(u). Therefore, u is a non-trivial non-negative weak
solution of problem (1.4). Theorem 1.4 is completely proved. �

Remark 4.3. We cannot use the mountain pass argument in the proof of The-
orem 1.4 since the functional Jλ does not satisfy the geometry of the moun-
tain pass theorem. More exactly, we cannot find a function φ2 ≥ 0 such that
Jλ(tφ2) → −∞ as t→ ∞ as in Lemma 3.1.
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