References
- A. S. Ackleh and L. Ke, Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3483-3492. https://doi.org/10.1090/S0002-9939-00-05912-8
- R. M. P. Almeida, S. N. Antontsev, and J. Duque, On a nonlocal degenerate parabolic problem, Nonlinear Anal. Real World Appl. 27 (2016), 146-157. https://doi.org/10.1016/j.nonrwa.2015.07.015
- J. R. Anderson and K. Deng, Global existence for degenerate parabolic equations with a non-local forcing, Math. Methods Appl. Sci. 20 (1997), no. 13, 1069-1087. https://doi.org/10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO;2-Y
- S. N. Antontsev and S. I. Shmarev, Evolution PDEs with nonstandard growth conditions, Atlantis Studies in Differential Equations, 4, Atlantis Press, Paris, 2015.
- T. Boudjeriou, Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity, Mediterr. J. Math. 17 (2020), no. 5, Paper No. 162, 24 pp. https://doi.org/10.1007/s00009-020-01584-6
- T. Boudjeriou, On the diffusion p(x)-Laplacian with logarithmic nonlinearity, J. Elliptic Parabol. Equ. 6 (2020), no. 2, 773-794. https://doi.org/10.1007/s41808-020-00083-9
- M. A. J. Chaplain, M. Lachowicz, Z. Szyma'nska, and D. Wrzosek, Mathematical modelling of cancer invasion: the importance of cell-cell adhesion and cell-matrix adhesion, Math. Models Methods Appl. Sci. 21 (2011), no. 4, 719-743. https://doi.org/10.1142/S0218202511005192
- H. Chen, P. Luo, and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl. 422 (2015), no. 1, 84-98. https://doi.org/10.1016/j.jmaa.2014.08.030
- H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations 258 (2015), no. 12, 4424-4442. https://doi.org/10.1016/j.jde.2015.01.038
- M. M. Chipot and B. Lovat, On the asymptotic behaviour of some nonlocal problems, Positivity 3 (1999), no. 1, 65-81. https://doi.org/10.1023/A:1009706118910
- M. M. Chipot and B. Lovat, Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (2001), no. 1, 35-51.
- M. M. Chipot and L. Molinet, Asymptotic behaviour of some nonlocal diffusion problems, Appl. Anal. 80 (2001), no. 3-4, 279-315. https://doi.org/10.1080/00036810108840994
- M. M. Chipot and J. Rodrigues, On a class of nonlocal nonlinear elliptic problems, RAIRO Mod'el. Math. Anal. Num'er. 26 (1992), no. 3, 447-467. https://doi.org/10.1051/m2an/1992260304471
- M. M. Chipot, V. Valente, and G. Vergara-Caffarelli, Remarks on a nonlocal problem involving the Dirichlet energy, Rend. Sem. Mat. Univ. Padova 110 (2003), 199-220.
- H. Ding and J. Zhou, Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, Appl. Math. Optim. 83 (2021), no. 3, 1651-1707. https://doi.org/10.1007/s00245-019-09603-z
- K. Enqvist and J. McDonald, Q-balls and baryogenesis in the mssm, Phys. Letters B 425 (1998), no. 3-4, 309-321. https://doi.org/10.1016/S0370-2693(98)00271-8
- J. Furter and M. Grinfeld, Local vs. nonlocal interactions in population dynamics, J. Math. Biol. 27 (1989), no. 1, 65-80. https://doi.org/10.1007/BF00276081
- T. Hiramatsu, M. Kawasaki, and F. Takahashi, Numerical study of q-ball formation in gravity mediation, Prog. Theor. Phys. Supplement 190 (2011), 229-238. https://doi.org/10.1143/PTPS.190.229
- B. Hu and H.-M. Yin, Semilinear parabolic equations with prescribed energy, Rend. Circ. Mat. Palermo (2) 44 (1995), no. 3, 479-505. https://doi.org/10.1007/BF02844682
- S. Ji, J. Yin, and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations 261 (2016), no. 10, 5446-5464. https://doi.org/10.1016/j.jde.2016.08.017
- G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
- J.-L. Lions, Quelques m'ethodes de r'esolution des probl'emes aux limites non lin'eaires, Dunod, Paris, 1969.
- J.-L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), 284-346, North-Holland Math. Stud., 30, North-Holland, Amsterdam, 1978.
- L. C. Nhan and L. X. Truong, Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math. 151 (2017), 149-169. https://doi.org/10.1007/s10440-017-0106-5
- C. V. Pao, Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory, J. Math. Anal. Appl. 166 (1992), no. 2, 591-600. https://doi.org/10.1016/0022-247X(92)90318-8
- E. Piskin and T. Comert, Qualitative analysis of solutions for a parabolic type Kirchhoff equation with logarithmic nonlinearity, Open J. Discrete Appl. Math. 4 (2021), no. 2, 1-10. https://doi.org/10.30538/psrp-odam2021.0054
- U. Sert and S. I. Shmarev, On a degenerate nonlocal parabolic equation with variable source, J. Math. Anal. Appl. 484 (2020), no. 1, 123695, 30 pp. https://doi.org/10.1016/j.jmaa.2019.123695
- U. Sert and S. I. Shmarev, On a class of nonlocal parabolic equations of Kirchhoff type: nonexistence of global solutions and blow-up, Math. Methods Appl. Sci. 45 (2022), no. 14, 8674-8700. https://doi.org/10.1002/mma.7525
- X. Shao, Global existence and blow-up for a Kirchhoff-type hyperbolic problem with logarithmic nonlinearity, Appl. Math. Optim. 84 (2021), no. 2, 2061-2098. https://doi.org/10.1007/s00245-020-09704-0
- J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl. 146 (1987), no. 4, 65-96. https://doi.org/10.1007/BF01762360
- K. N. Soltanov and U. Sert, Certain results for a class of nonlinear functional spaces, Carpathian Math. Publ. 12 (2020), no. 1, 208-228. https://doi.org/10.15330/cmp.12.1.208-228
- M. Xiang, V. R˘adulescu, and B. Zhang, Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions, Nonlinearity 31 (2018), no. 7, 3228-3250. https://doi.org/10.1088/1361-6544/aaba35
- M. Xiang, D. Yang, and B. Zhang, Degenerate Kirchhoff-type fractional diffusion problem with logarithmic nonlinearity, Asymptot. Anal. 118 (2020), no. 4, 313-329. https://doi.org/10.3233/asy-191564
- L. Yan and Z. Yang, Blow-up and non-extinction for a nonlocal parabolic equation with logarithmic nonlinearity, Bound. Value Probl. 2018 (2018), Paper No. 121, 11 pp. https://doi.org/10.1186/s13661-018-1042-7
- F. Zeng, P. Shi, and M. Jiang, Global existence and finite time blow-up for a class of fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity, AIMS Math. 6 (2021), no. 3, 2559-2578. https://doi.org/10.3934/math.2021155