DOI QR코드

DOI QR Code

ON SOLVABILITY OF A CLASS OF DEGENERATE KIRCHHOFF EQUATIONS WITH LOGARITHMIC NONLINEARITY

  • Ugur Sert (Department of Mathematics Hacettepe University)
  • Received : 2022.03.16
  • Accepted : 2023.02.20
  • Published : 2023.05.01

Abstract

We study the Dirichlet problem for the degenerate nonlocal parabolic equation ut - a(||∇u||2L2(Ω))∆u = Cb ||u||βL2(Ω) |u|q(x,t)-2 u log |u| + f in QT, where QT := Ω × (0, T), T > 0, Ω ⊂ ℝN, N ≥ 2, is a bounded domain with a sufficiently smooth boundary, q(x, t) is a measurable function in QT with values in an interval [q-, q+] ⊂ (1, ∞) and the diffusion coefficient a(·) is a continuous function defined on ℝ+. It is assumed that a(s) → 0 or a(s) → ∞ as s → 0+, therefore the equation degenerates or becomes singular as ||∇u(t)||2 → 0. For both cases, we show that under appropriate conditions on a, β, q, f the problem has a global in time strong solution which possesses the following global regularity property: ∆u ∈ L2(QT) and a(||∇u||2L2(Ω))∆u ∈ L2(QT ).

Keywords

References

  1. A. S. Ackleh and L. Ke, Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3483-3492. https://doi.org/10.1090/S0002-9939-00-05912-8 
  2. R. M. P. Almeida, S. N. Antontsev, and J. Duque, On a nonlocal degenerate parabolic problem, Nonlinear Anal. Real World Appl. 27 (2016), 146-157. https://doi.org/10.1016/j.nonrwa.2015.07.015 
  3. J. R. Anderson and K. Deng, Global existence for degenerate parabolic equations with a non-local forcing, Math. Methods Appl. Sci. 20 (1997), no. 13, 1069-1087.  https://doi.org/10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO;2-Y
  4. S. N. Antontsev and S. I. Shmarev, Evolution PDEs with nonstandard growth conditions, Atlantis Studies in Differential Equations, 4, Atlantis Press, Paris, 2015. 
  5. T. Boudjeriou, Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity, Mediterr. J. Math. 17 (2020), no. 5, Paper No. 162, 24 pp. https://doi.org/10.1007/s00009-020-01584-6 
  6. T. Boudjeriou, On the diffusion p(x)-Laplacian with logarithmic nonlinearity, J. Elliptic Parabol. Equ. 6 (2020), no. 2, 773-794. https://doi.org/10.1007/s41808-020-00083-9 
  7. M. A. J. Chaplain, M. Lachowicz, Z. Szyma'nska, and D. Wrzosek, Mathematical modelling of cancer invasion: the importance of cell-cell adhesion and cell-matrix adhesion, Math. Models Methods Appl. Sci. 21 (2011), no. 4, 719-743. https://doi.org/10.1142/S0218202511005192 
  8. H. Chen, P. Luo, and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl. 422 (2015), no. 1, 84-98. https://doi.org/10.1016/j.jmaa.2014.08.030 
  9. H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations 258 (2015), no. 12, 4424-4442. https://doi.org/10.1016/j.jde.2015.01.038 
  10. M. M. Chipot and B. Lovat, On the asymptotic behaviour of some nonlocal problems, Positivity 3 (1999), no. 1, 65-81. https://doi.org/10.1023/A:1009706118910 
  11. M. M. Chipot and B. Lovat, Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (2001), no. 1, 35-51. 
  12. M. M. Chipot and L. Molinet, Asymptotic behaviour of some nonlocal diffusion problems, Appl. Anal. 80 (2001), no. 3-4, 279-315. https://doi.org/10.1080/00036810108840994 
  13. M. M. Chipot and J. Rodrigues, On a class of nonlocal nonlinear elliptic problems, RAIRO Mod'el. Math. Anal. Num'er. 26 (1992), no. 3, 447-467. https://doi.org/10.1051/m2an/1992260304471 
  14. M. M. Chipot, V. Valente, and G. Vergara-Caffarelli, Remarks on a nonlocal problem involving the Dirichlet energy, Rend. Sem. Mat. Univ. Padova 110 (2003), 199-220. 
  15. H. Ding and J. Zhou, Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, Appl. Math. Optim. 83 (2021), no. 3, 1651-1707. https://doi.org/10.1007/s00245-019-09603-z 
  16. K. Enqvist and J. McDonald, Q-balls and baryogenesis in the mssm, Phys. Letters B 425 (1998), no. 3-4, 309-321.  https://doi.org/10.1016/S0370-2693(98)00271-8
  17. J. Furter and M. Grinfeld, Local vs. nonlocal interactions in population dynamics, J. Math. Biol. 27 (1989), no. 1, 65-80. https://doi.org/10.1007/BF00276081 
  18. T. Hiramatsu, M. Kawasaki, and F. Takahashi, Numerical study of q-ball formation in gravity mediation, Prog. Theor. Phys. Supplement 190 (2011), 229-238.  https://doi.org/10.1143/PTPS.190.229
  19. B. Hu and H.-M. Yin, Semilinear parabolic equations with prescribed energy, Rend. Circ. Mat. Palermo (2) 44 (1995), no. 3, 479-505. https://doi.org/10.1007/BF02844682 
  20. S. Ji, J. Yin, and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations 261 (2016), no. 10, 5446-5464. https://doi.org/10.1016/j.jde.2016.08.017 
  21. G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. 
  22. J.-L. Lions, Quelques m'ethodes de r'esolution des probl'emes aux limites non lin'eaires, Dunod, Paris, 1969. 
  23. J.-L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), 284-346, North-Holland Math. Stud., 30, North-Holland, Amsterdam, 1978. 
  24. L. C. Nhan and L. X. Truong, Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math. 151 (2017), 149-169. https://doi.org/10.1007/s10440-017-0106-5 
  25. C. V. Pao, Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory, J. Math. Anal. Appl. 166 (1992), no. 2, 591-600. https://doi.org/10.1016/0022-247X(92)90318-8 
  26. E. Piskin and T. Comert, Qualitative analysis of solutions for a parabolic type Kirchhoff equation with logarithmic nonlinearity, Open J. Discrete Appl. Math. 4 (2021), no. 2, 1-10. https://doi.org/10.30538/psrp-odam2021.0054 
  27. U. Sert and S. I. Shmarev, On a degenerate nonlocal parabolic equation with variable source, J. Math. Anal. Appl. 484 (2020), no. 1, 123695, 30 pp. https://doi.org/10.1016/j.jmaa.2019.123695 
  28. U. Sert and S. I. Shmarev, On a class of nonlocal parabolic equations of Kirchhoff type: nonexistence of global solutions and blow-up, Math. Methods Appl. Sci. 45 (2022), no. 14, 8674-8700.  https://doi.org/10.1002/mma.7525
  29. X. Shao, Global existence and blow-up for a Kirchhoff-type hyperbolic problem with logarithmic nonlinearity, Appl. Math. Optim. 84 (2021), no. 2, 2061-2098. https://doi.org/10.1007/s00245-020-09704-0 
  30. J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl. 146 (1987), no. 4, 65-96.  https://doi.org/10.1007/BF01762360
  31. K. N. Soltanov and U. Sert, Certain results for a class of nonlinear functional spaces, Carpathian Math. Publ. 12 (2020), no. 1, 208-228. https://doi.org/10.15330/cmp.12.1.208-228 
  32. M. Xiang, V. R˘adulescu, and B. Zhang, Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions, Nonlinearity 31 (2018), no. 7, 3228-3250. https://doi.org/10.1088/1361-6544/aaba35 
  33. M. Xiang, D. Yang, and B. Zhang, Degenerate Kirchhoff-type fractional diffusion problem with logarithmic nonlinearity, Asymptot. Anal. 118 (2020), no. 4, 313-329. https://doi.org/10.3233/asy-191564 
  34. L. Yan and Z. Yang, Blow-up and non-extinction for a nonlocal parabolic equation with logarithmic nonlinearity, Bound. Value Probl. 2018 (2018), Paper No. 121, 11 pp. https://doi.org/10.1186/s13661-018-1042-7 
  35. F. Zeng, P. Shi, and M. Jiang, Global existence and finite time blow-up for a class of fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity, AIMS Math. 6 (2021), no. 3, 2559-2578. https://doi.org/10.3934/math.2021155