Browse > Article

Modeling of Degenerate Quantum Well Devices Including Pauli Exclusion Principle  

Lee, Eun-Ju (Dept. of Information Communication Engineering, Hallym University)
Publication Information
Abstract
A new model for degenerate semiconductor quantum well devices was developed. In this model, the multi-subband Boltzmann transport equation was formulated by applying the Pauli exclusion principle and coupled to the Schrodinger and Poisson equations. For the solution of the resulted nonlinear system, the finite difference method and the Newton-Raphson method was used and carrier energy distribution function was obtained for each subband. The model was applied to a Si MOSFET inversion layer. The results of the simulation showed the changes of the distribution function from Boltzmann like to Fermi-Dirac like depending on the electron density in the quantum well, which presents the appropriateness of this modeling, the effectiveness of the solution method, and the importance of the Pauli -exclusion principle according to the reduced size of semiconductor devices.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Vurgaftman and J.R. Meyer, 'High-temperature HgTe/CdTe multiple-quantum-well lasers', Optics Express, vol.2 no. 4, pp. 137-142, 1998   DOI
2 R. Tsu, 'Silicon-based quantum wells', Nature, Vol. 364, 1 July 1993   DOI   ScienceOn
3 Q. L., S.-L. Wang, N. Goldsman and J. Frey, 'RELY : A physics-Based CAD Tool for Predicting Time-Dependent Hot Electron Induced Degradation in MOSFETs', Solid-State Electronics, vol. 36, pp. 833-841, 1993   DOI   ScienceOn
4 R. L. Liboff, Introduction to the Theory of Kinetic Equations. New York : John Wiley & Sons, 1969
5 C. E. Korman and I. D. Mayergoyz, 'A Glovally Convergent Algorithm for the Solution of the Steady-State Semiconductor Device', Journal of Applied Physics, vol. 68, no. 3, pp. 1324, 1990   DOI
6 E. M. Conwell, 'High Field Transport in Semiconductors', Solid State Physics, Suppl. 9, Academic Press, New York, 1967
7 W. Quade, M. Rudan, and E. Scholl, 'Hydrodynamic Simulation of Impact-Ionization Effects in P-N Junctions', IEEE Trans. Computer-Aided Design, vol. 10, no. 10, pp. 1287-1294, 1991   DOI   ScienceOn
8 A. Balandin, K. L. Wang, N. Kouklin and S. Bandyopadhyay, 'Raman Spectroscopic Study of Inter-subband Transitions in Self Assembled CdS Quantum Dots', Appl. Phys. Lett., Vol. 76, p.137, 2000   DOI   ScienceOn
9 S. E. Laux and M. V. Fischetti, 'Monte Carlo Study of Velocity Overshoot in a 0.1-Micron CMOS Inverter', Proceedings, 1995 IEDM, pp. 877-880, December 1997   DOI
10 Blachman, N., 'Mathematica : a Practical Approach', 2nd ed., Prentice Hall(Upper Saddle River, N.J), 1999
11 M.S. Boris Gelmont and C. Moglestue, 'Theory of Junction Between Two-Dimensional Electron Gas and p-Type Semiconductor', IEEE Trans. on ED. vol. 39, no. 5, pp. 1216-1223, 1992   DOI   ScienceOn
12 J.B. Wang and S. Midgley, 'Quantum waveguide theory : a direct solution to the time-dependent Schrodinger equation', Phys. Rev. B 60, 13668, 1999   DOI
13 B. N. Parlett, 'The Symmetrical Eigenvalue Problem', Prentice Hall, 1980
14 Frank Stern and W.E. Howard, 'Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit', Physical Review, Vol. 163, p.816, 1967   DOI
15 Thomas G. Pedersen, Kjeld Pedersen and Thomas B. Kristensen, 'Optical second-harmonic generation as a probe of quantum well states in ultrathin Au and Ag films deposited on Si(111)', Thin Solid Films, vol. 364, 1-2 pp. 86-90, 2000   DOI   ScienceOn
16 L. R. Friedman, R. A. Soref, and J. B. Khurgin, 'Linear and quadratic electrooptic effects in symmetric and asymmetric quantum well structures,' IEEE, J. Quantum Electronics, Vol. 31, No. 2, pp 219-227, February 1995   DOI   ScienceOn
17 YC Yeo, TC Chong, MF Li, WJ Fan, 'Electronic band structures and optical gain spectra of strained wurtzite GaN-AlxGal-xN quantum-well lasers', IEEE Journal of Quantum Electronics vol. 34 no. 3, pp.526-534, 1998   DOI   ScienceOn
18 Hyuk J. Choi, E. Rotenberg, R. K. Kawakami, U. Bovensiepen, J. H. Wolfe, N. V. Smith, and Z. Q. Qiu, 'Effect of interfacial roughness on the phase of quantum well states in Cu/Co(001) and Cu/Ni(001) systems', Phys. Rev. B 62, 6561 2000   DOI   ScienceOn