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ON SOLVABILITY OF A CLASS OF DEGENERATE

KIRCHHOFF EQUATIONS WITH LOGARITHMIC

NONLINEARITY

Uğur Sert

Abstract. We study the Dirichlet problem for the degenerate nonlocal
parabolic equation

ut − a
(
∥∇u∥2L2(Ω)

)
∆u = Cb ∥u∥βL2(Ω)

|u|q(x,t)−2 u log |u|+ f in QT ,

where QT := Ω × (0, T ), T > 0, Ω ⊂ RN , N ≥ 2, is a bounded domain

with a sufficiently smooth boundary, q(x, t) is a measurable function in
QT with values in an interval [q−, q+] ⊂ (1,∞) and the diffusion coef-

ficient a(·) is a continuous function defined on R+. It is assumed that

a(s) → 0 or a(s) → ∞ as s → 0+, therefore the equation degenerates or
becomes singular as ∥∇u(t)∥2 → 0. For both cases, we show that under

appropriate conditions on a, β, q, f the problem has a global in time

strong solution which possesses the following global regularity property:
∆u ∈ L2(QT ) and a(∥∇u∥2L2(Ω))∆u ∈ L2(QT ).

1. Introduction

We study the Dirichlet problem for the nonlinear parabolic equation with
the nonlocal terms

(1.1)

{
ut−a

(
∥∇u∥2L2(Ω)

)
∆u=Cb ∥u∥βL2(Ω) |u|

q(x,t)−2
u log |u|+f(z) in QT ,

u (x, 0)=u0 (x) in Ω, u=0 on ∂Ω× (0, T ),

where QT = Ω × (0, T ) is a cylinder of height T > 0, Ω ⊂ RN , N ≥ 2, is a
bounded domain with the boundary ∂Ω ∈ C2, Cb ∈ R is a constant, a(·) is a
real-valued function defined on R+ and q(z) is a real-valued measurable function
of the argument z = (x, t) ∈ QT with values in an interval [q−, q+] ⊂ (1,∞).
It is assumed that u0 ∈ H1

0 (Ω), f ∈ L2(0, T ;H1
0 (Ω)).

One of the main features of problem (1.1) is the presence of the term

a(∥∇u∥2L2(Ω)),
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which is said to be nonlocal since it depends not only on the point in QT ,
where the equation is evaluated, but on the norm of the whole solution. Such
problems are usually called of Kirchhoff-type, as they are generalizations of
the Kirchhoff equation, originally proposed in [21]. More specifically, Kirchhoff
proposed the following model

ρ
∂2u

∂t2
−

(
ρ0
h

+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0,

where ρ, ρ0, h, L, E are constants. This nonlocal model extends the classical
D’Alembert’s wave equation, by considering the effects of the changes in the
length of the strings during the vibrations. After the pioneer work of Lions
[23] on the abstract framework to Kirchhoff-type equations, the solvability of
these nonlocal problems has been studied in the general dimension by various
authors.

There are numerous nonlocal mathematical models of Kirchhoff type studied
by many authors to express the processes in physics and engineering see, e.g.,
[3, 10–14, 17, 25, 28] and references therein. For example, nonlocal PDEs arise
in mathematical modelling of migration of a population to describe the density
of some biological species are worked in [3, 13, 17], nonlocal models obtained
from combustion theory is considered in [25] and in medicine [7].

We note that problem (1.1) might be viewed as a model of spreading of bac-
teria with u standing for the population density at the point x at the moment

t. The term ∥u∥β2 |u|q(x,t)−2u log |u| is the external source which represents the
death and birth processes whose rates depend on the total population at the
instant t, ∥u∥2, the pointwise density, and the point (x, t) in the problem do-
main. As for the diffusion coefficient, we refer to [32], where it is shown that
the term a(∥∇u∥22)∆u appears as the limit of a fractional diffusion operator
that represents the balance between the rates at which the individuals arrive
at the location x or leave it.

The questions of existence, uniqueness and asymptotic behavior of solutions
of the initial and boundary-value problems for the equations

ut − a(l(u))∆u = f, ut − a(∥∇u∥2L2(Ω))∆u = f,

were studied in the series of works [10–12, 14] with a continuous function a
whose argument l(u) was a linear continuous functional on L2(Ω), or a con-
tinuously differentiable function a of the argument ∥∇u∥2L2(Ω). In these works,

the equation is nondegenerate: a is assumed to be bounded away from zero so
there exist positive constants 0 < m ≤M <∞ such that

(1.2) m ≤ a(s) ≤M, ∀s ∈ R.
The nonlocal problems without condition (1.2) were studied in [1,2]. Paper

[2] deals with the homogeneous Dirichlet problem for the degenerate nonlocal
equation

ut − ∥u(t)∥2γL2(Ω)∆u = f, γ ∈ R.
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It is proven that for γ ≥ 0 the solution exists globally in time, in the case γ < 0
local in time existence is established. It is shown that in the case γ < 0 and
f ≡ 0 every solution extincts in finite time.

In recent years, the logarithmic nonlinearity appears frequently in par-
tial differential equations which describes important physical phenomena (see
[5, 6, 8, 9, 20, 24, 26]) and the references therein). This type of nonlinearity was
introduced in the nonrelativistic wave equations describing spinning particles
moving in an external electromagnetic field and also in the relativistic wave
equation for spinless particles [19]. Moreover, the logarithmic nonlinearity ap-
pears in several branches of physics such as nuclear physics [34], optics and
Q-ball dynamics in theoretical physics [16,18].

It was Chen et al. [8, 9] who first carried out the research on logarithmic
source. They studied the following semilinear heat equation with logarithmic
nonlinearity in [8]:

ut −∆u = u log |u|
in a bounded domain Ω ⊂ RN with zero Dirichlet boundary condition. By
using the logarithmic Sobolev inequality, they proved the existence of global
weak solution and showed that the power nonlinearity is a critical condition of
blow-up in finite time for the solutions of the considered problem.

There are a few papers devoted to study on Kirchhoff-type equations with
logarithmic nonlinearity [15, 29, 33, 35]. The first result due to Ding and Zhou
[15]. They considered the following fractional Kirchhoff-type parabolic problem
with logarithmic nonlinearity:

ut +M([u]2s)LKu = |u|p−2u log |u| in Ω× R+,

u(x, t) = 0 in (RN \ Ω)× R+,

u(x, 0) = u0(x) in Ω,

where 0 < s < 1, LK is a nonlocal integro-differential operator which gen-
eralizes the fractional Laplace operator (−∆)s. The diffusion coefficient M :
[0,∞) → [0,∞) is a continuous function depending on the Gagliardo seminorm
[u]s. They combined the Galerkin approximation method and the potential
well to prove the existence of a global weak solution with subcritical and criti-
cal states. According to the differential inequality, the blow-up solution of the
equation is given.

The homogeneous Dirichlet problem for the degenerate Kirchhoff-type frac-
tional diffusion equation

ut + [u]2s(−∆)su = |u|q−2u ln |u|, (x, t) ∈ Ω× R+

is studied in [33]. By using potential well method ideas, the authors find a
sufficient condition for the existence of global solutions that vanish at infinity
or solutions that blow up in finite time under some appropriate assumptions.

Equations with variable nonlinearity and nonlocal equations of Kirchhoff
type with logarithmic source appear in numerous applications and are actively
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studied as mentioned above. Inspired by the above works, in the present article
we concern a class of the evolution equations which combine both features.
Besides that the reaction part of the equation has a nonlocal source as well.

Our purpose in this paper is to obtain sufficient conditions on the existence
of global strong solutions of problem (1.1) by avoiding the nondegeneracy con-
dition (1.2) which allows us to treat a wider class of nonlocal terms a(·). We
study problem (1.1) without this condition and assume nonlocal dependence
of the reaction term on the unknown function with logarithmic nonlinearity.
Instead of (1.2) we impose a restriction on the rate of vanishing and growth of
a(s) when s→ 0+ and s→ ∞. To be precise, we assume that

Cas
τ
2 ≤ a(s)s ≤ Cµ

(
s

µ
2 + s

)
, s ≥ 0,

with some constants τ > 1, µ > 1 and Ca > 0, Cµ > 0, and claim monotonicity
of a(s2)s. All these conditions are fulfilled, for example, if a(s2) = Csτ−2 with
constants C > 0 and τ > 1.

We find the conditions on the given parameters and the exponent q(x, t)
which ensure global in time existence of so-called a strong solution to problem
(1.1) in the function space:

V ≡ {u(z) : u ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩ C0([0, T ];H1

0 (Ω)), ut ∈ L2(QT )}.

To the best of our knowledge, there are no papers to deal with the global
existence results for problems like (1.1) and this is the first result about global
higher regularity of solutions of a Kirchhoff-type degenerate parabolic problem
with logarithmic nonlinearity.

In the following section, we state the definition of strong solution and main
theorem of this paper besides some notations, related lemmas and some pre-
liminary results are presented. The solution of problem (1.1) is obtained as the
limit of the family of solutions of the regularized nondegenerate problems (3.1)
with a(∥∇u∥2L2(Ω)) substituted by a(ϵ+∥∇u∥2L2(Ω)), ϵ > 0. The solution of the

nondegenerate problem (3.1) is constructed in Section 3 by means of Galerkin’s
method. The proof is based on the series of a priori estimate for the Galerkin
approximations. These estimates do not depend on ϵ and are used in Section
4 to justify passing to the limit in ϵ. At this step we use the monotonicity of
a(s2)s.

2. Assumptions and the main result

Although the source term in equation (1.1) involves the variable power of
the unknown function, the theory of the variable Lebesgue and Sobolev spaces
is not used in this work, except for several basic facts which can be found, e.g.,
in [4, Ch. 1].
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2.1. Function spaces and notations

Let q(x, t) be a measurable function on QT , q(x, t) ∈ [q−, q+] ⊂ (1,∞) a.e.
in QT . The set of functions

Lq(·,·)(QT ) = {v : |v(x, t)|q(x,t) ∈ L1(QT )}

endowed with the norm

∥u∥q(·,·),QT
= inf

{
λ > 0 :

∫
QT

∣∣∣u
λ

∣∣∣q dz ≤ 1

}
is a Banach space. The relation between the norm ∥u∥q(·,·),QT

and the modular∫
QT

|u|q dz is given by the inequalities

(2.1)



min
{
∥u∥q

−

q(·,·),QT
, ∥u∥q

+

q(·,·),QT

}
≤
∫
QT

|u|q(x,t) dz

≤ max
{
∥u∥q

−

q(·,·),QT
, ∥u∥q

+

q(·,·),QT

}
,

min
{
∥u(t)∥q

−

q(·,t),Ω, ∥u(t)∥
q+

q(·,t),Ω

}
≤
∫
Ω

|u(t)|q(x,t) dx

≤ max
{
∥u(t)∥q

−

q(·,t),Ω, ∥u(t)∥
q+

q(·,t),Ω

}
for a.e. t ∈ (0, T ). The generalized Hölder inequality holds: for all u ∈
Lq(·,t)(Ω), v ∈ Lq′(·,t)(Ω) and a.e. t ∈ (0, T )

(2.2)

∫
Ω

|u(t)||v(t)| dx ≤ 2∥u(t)∥q(·,t)∥v(t)∥q′(·,t),
1

q
+

1

q′
= 1.

The analogue of Sobolev’s embedding inequality is true: if q(·, t) ∈ C0(Ω̄) and
q+ < 2N

N−2 , then for a.e. t ∈ (0, T )

(2.3) ∥u∥q(·,t) ≤ C∥∇u(t)∥2 ∀u ∈ Lq(·,t)(Ω) ∩H1
0 (Ω).

Throughout the text, the symbol C or Ck (k ∈ N) represents the constants
which can be explicitly calculated or estimated using the known quantities, but
whose exact value is not crucial for the argument and may change from line to
line even inside the same formula. We recall that the notation z is often used
for the points of the cylinder QT : z = (x, t) ∈ Ω× (0, T ) = QT .

For the functions u(t), v(t) : (0, T ) 7→ H1
0 (Ω) we denote

(u(t), v(t))2,Ω =

∫
Ω

u(x, t)v(x, t) dx, ∥u(t)∥22 =

∫
Ω

u2(x, t) dx

∥∇u(t)∥22 =

∫
Ω

|∇u(x, t)|2 dx.

Similar problem to (1.1) is studied in the article [27]. Differently from this
article we consider logarithmic nonlinearity in the reaction part of the equation
(1.1). The presence of the logarithmic nonlinearity caused some difficulties to
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obtain energy inequalities for the function sequences of Galerkin approxima-
tions. In order to handle this situation the following two lemmas will be used to
get the required a priori estimates. The proof of Lemma 2.1 is straightforward,
and will be omitted. For the proof of Lemma 2.2, see [31].

By the help of these lemmas, differently from the paper [27], under cer-
tain changes on the parameters of the problem we manage to prove the global
existence of the strong solution of the problem (1.1).

Lemma 2.1. Let ϱ be a positive number. Then the following inequality fulfills

log s ≤ e−1

ϱ
sϱ for all s ∈ [1,∞).

Lemma 2.2. Assume that ζ : Ω → [1,∞) is a measurable function satisfying
1 ≤ ζ− ≤ ζ (x) ≤ ζ+ <∞ and β ≥ 1, σ > 0. Then for every u ∈ Lζ(·)+σ (Ω)∫

Ω

|u|ζ(x) |log |u||β dx ≤M1

∫
Ω

|u|ζ(x)+σ
dx+M2

is fulfilled. Here M1 ≡ M1 (σ, β) > 0 and M2 ≡ M2 (σ, β, |Ω|) > 0 are con-
stants.

2.2. Statement of the main result

Assume that the following conditions are fulfilled:

(A.1) (i) a : (0,∞) → (0,∞), a(s) ∈ C0 ((0,∞))

a(s2)s ∈ C0 ([0,∞)) ∩ C1 ((0,∞)) ,
(
a(s2)s

)′ ≥ 0 for s > 0;

(ii) there exist constants τ > 1, µ > 1, β ≥ 0, Ca > 0, Cµ > 0 such
that for all s ≥ 0

Cas
τ
2 ≤ a(s)s ≤ Cµ

(
s

µ
2 + s

)
;

(A.2) Let q(x, t) : QT → (1,∞) be a measurable function and q(·, t) ∈ C0(Ω̄)
such that there exist constants q± such that

1 < q− ≤ q(x, t) ≤ q+ a.e. in QT ,
q+ < 2(N−1)

N−2 if N > 2,

q+ ∈ (q−,∞) if N = 2;

(A.3) (i) if Cb ∈ R\{0}, then the parameters τ , β, q± satisfy the inequalities

β + q+ < max{2, τ}, 2(β + q+ − 1) < τ < min{3, β + 2},

(ii) if Cb = 0, then 1 < τ < 3.

The strong solution of problem (1.1) is understood in the following way:

Definition (Strong solution). A function u : QT → R is called a strong solu-
tion of problem (1.1) if

(i) u ∈ V ≡ {u(z) : u ∈ L2(0, T ;H2(Ω)∩H1
0 (Ω))∩C0([0, T ];H1

0 (Ω)), ut ∈
L2(QT )};
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(ii) for every test-function η ∈ V∫
QT

(
ηut + a(∥∇u∥22)∇u · ∇η

)
dz = Cb

∫
QT

∥u∥β2 |u|q(z)−2u log |u|η dz(2.4)

+

∫
QT

fη dz;

(iii) for every ζ ∈ L2(Ω)∫
Ω

(u(x, t)− u0(x))ζ(x) dx→ 0 as t→ 0.

The conditions of global in time existence of strong solutions to problem
(1.1) are given in the following theorem.

Theorem 2.3. Assume that conditions (A.1)-(A.3) are fulfilled. Then for
every u0 ∈ H1

0 (Ω) and f ∈ L2(0, T ;H1
0 (Ω)) problem (1.1) has a strong solution

u(z) which possesses the following properties:

ess sup
(0,T )

∥u(t)∥2H1
0 (Ω) + ∥∂tu∥L2(QT ) + ∥∆u∥2L2(QT )(2.5)

+

∫
QT

a2(∥∇u∥22)
(
|∇u|2 + (∆u)2

)
dz ≤ C

with a constant C depending on Ca, Cb, β, τ , q
±, ∥u0∥H1

0 (Ω), ∥f∥L2(0,T ;H1
0 (Ω)).

3. Regularized problem

Given a parameter ϵ > 0, let us consider the family of regularized nonde-
generate parabolic problems:

(3.1)


ut − aϵ(∥∇u∥22)∆u = Cb ∥u∥β2 |u|

q(z)−2
u log |u|+ f in QT ,

u (x, 0) = u0 (x) , u = 0 on ∂Ω× (0, T ),

aϵ(s) := a(s+ ϵ).

A strong solution of problem (1.1) can be obtained as the limit as ϵ → 0 of a
family of solutions of the regularized problem (3.1). By a solution of problem
(3.1), we mean a function uϵ ∈ V which satisfies the integral identity∫

QT

(
∂tuϵξ + aϵ(∥∇uϵ∥22)∇uϵ · ∇ξ

)
dz(3.2)

= Cb

∫
QT

∥uϵ∥β2 |uϵ|
q(x,t)−2

uϵ log |uϵ|ξ dz +
∫
QT

fξ dz

with any the test-function ξ ∈ V and takes the initial data by continuity. The
goal of this section is to prove the following assertion.

Lemma 3.1. Under the conditions of Theorem 2.3, for every ϵ ∈ (0, 1) problem
(3.1) has at least one strong solution u = uϵ.
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3.1. Galerkin’s approximations

Let {φk}∞k=1 ⊂ H1
0 (Ω) and {λk} be the eigenfunctions and eigenvalues of

the Dirichlet problem for the Laplace equation, respectively: for φk ∈ H1
0 (Ω)

(∇φk,∇φ)2,Ω = λk(φk, φ)2,Ω ∀φ ∈ H1
0 (Ω).

The system {φk} ⊂ H1
0 (Ω) forms an orthonormal basis of L2(Ω),

{
1√
λi
φi

}
is

an orthonormal basis of H1
0 (Ω). The solution of problem (3.1) is sought as the

limit of the sequence of functions

um(x, t) =

m∑
i=1

gim(t)φi(x),

where the coefficients gim(t) are to be defined. Since the set {φk} is dense in
H1

0 (Ω), for every u0 ∈ H1
0 (Ω)

um0 =

m∑
k=1

(u0, φk)2,Ωφk
H1

0 (Ω)−→ u0 as m→ ∞.

The functions gkm satisfy the initial conditions

gkm(0) = (u0, φk)2,Ω, k = 1, . . . ,m.

The functions gkm(t) are defined from the system of nonlinear ordinary differ-
ential equations

(∂tum, φ)2,Ω + aϵ
(
∥∇um∥22

)
(∇um,∇φ)2,Ω(3.3)

= Cb

∫
Ω

∥um∥β2 |um|q(z)−2um log |um|φdx+ (f, φ)2,Ω.

Taking φ = φj in (3.3) we find that (3.3) is equivalent to the Cauchy problem
for the system of m ordinary differential equations for the functions gjm(t):

(3.4)



g′jm(t) = − λjaϵ
(
∥∇um∥22

)
gjm(t)

+ Cb∥um∥β2
∫
Ω

∣∣∣∣∣
m∑
i=1

gim(t)φi

∣∣∣∣∣
q(x,t)−2 m∑

i=1

gim(t)φi

 log
∣∣ m∑
i=1

gim(t)φi

∣∣φj dx

+ (f, φj)2,Ω,

gjm(0) = (u0, φj)2,Ω, dj = 1, . . . ,m.

Set s = ∥∇um∥2 ≡
(∑m

i=1 λig
2
im(t)

) 1
2 and notice that because of conditions

(A.1)(i)-(ii) with τ > 1, µ > 1 there exists lims→0 a(s
2)s = 0, whence

aϵ(∥∇um∥22)gjm(t) =
(
aϵ(s

2)s
) gjm(t)(∑m

j=1 λjg
2
jm(t)

) 1
2

→ 0 as s→ 0+.

It follows that under assumptions (A.1)-(A.2) on a and q the right-hand sides
of (3.4) are continuous with respect to gim(t), and the existence of a solution
of system (3.4) on an interval (0, Tm) is guaranteed by Peano’s theorem.
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3.2. A priori estimates

In all estimates of this section we consider separately the cases τ > 2 and
1 < τ ≤ 2. Also, we tacitly assume that Cb ̸= 0, the estimates in the case
Cb = 0 are formulated in the end of the section as a corollary.

Lemma 3.2. If u0 ∈ L2(Ω) and q+ + β < max{τ, 2}, then for all t ∈ (0, T )

∥um(t)∥22,Ω +

∫ t

0

aϵ(∥∇um(s)∥22)∥∇um(s)∥22 ds(3.5)

≤ C
(
1 + ∥u0∥22 + ∥f∥22,QT

)
with a constant C depending on β, τ , q±, T , Ca, Cb and the constant in the
Poincaré inequality

(3.6) ∥v∥2 ≤ C∗∥∇v∥2 ∀v ∈ H1
0 (Ω).

Proof. Let us multiply each of equations (3.4) by gjm and sum up the results.
By Lemma 2.1 we obtain the energy inequality

1

2

d

dt
(∥um∥22) + aϵ(∥∇um∥22)∥∇um∥22(3.7)

= Cb∥um∥β2
∫
Ω

|um|q(x,t) log |um| dx+

∫
Ω

fum dx

≤ |Cb|∥um∥β2
(∫

Ω1

|um|q(x,t)| log |um|| dx+

∫
Ω2

|um|q(x,t) log |um| dx
)

+

∫
Ω

|f ||um| dx

≤ |Cb|∥um∥β2
∫
Ω1

|um|q
−
| log |um|| dx+ |Cb|∥um∥β2

∫
Ω2

|um|q
+

log |um| dx

+
1

2
∥um∥22 +

1

2
∥f∥22

≤ e−1|Ω||Cb|∥um∥β2 + C|Cb|∥um∥β2
∫
Ω2

|um|q
++σ dx+

1

2
∥um∥22 +

1

2
∥f∥22

≤ C∥um∥β2 (∥um∥q
++σ

q++σ + 1) +
1

2
∥um∥22 +

1

2
∥f∥22,

where

σ ∈ (0, 1) arbitrary, Ω1 := {x ∈ Ω : |um| ≤ 1} and Ω2 := {x ∈ Ω : |um| > 1}.
Let τ > 2. Using (A.2), (A.3), the Poincaré, Cauchy and Young’s inequalities

and taking σ > 0 such that q+ + σ ≤ 2N
N−2 and β + q+ + σ < τ , we transform

(3.7) as follows:

1

2

d

dt
(∥um∥22) + aϵ(∥∇um∥22) ∥∇um∥22

≤ C ∥∇um∥β2 (∥∇um∥q
++σ

2 + 1) +
1

2
∥um∥22 +

1

2
∥f∥22
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≤ C ′ ∥∇um∥β+q++σ
2 +

1

2
∥um∥22 +

1

2
∥f∥22 + C

with a constant C ′ depending on Cb, β, q
+ and the constant C∗ in the embed-

ding inequality (3.6). It follows from Young’s inequality that

1

2

d

dt
(∥um∥22) + aϵ(∥∇um∥22) ∥∇um∥22(3.8)

≤ Ca

2
∥∇um∥τ2 +

1

2
∥um∥22 +

1

2
∥f∥22 + C

with a constant C = C(Ca, Cb, β, τ, q
±, C ′).

For τ ≥ 2

Ca∥∇um∥τ2 ≤ Ca(ϵ+ ∥∇um∥22)
τ
2−1∥∇um∥22 ≤ aϵ(∥∇um∥22)∥∇um∥22.

Plugging this inequality into the right-hand sides of (3.8) and simplifying we
obtain

d

dt
(∥um∥22) + aϵ(∥∇um∥22) ∥∇um∥22 ≤ C + ∥um∥22 + ∥f∥22

whence
d

dt

(
∥um∥22 e

−t
)
≤ (C + ∥f∥22)e−t.

Integration of this inequality over the interval (0, t) ⊂ (0, T ) gives estimate
(3.5) in the case τ > 2.

Let 1 < τ ≤ 2 and β + q+ + σ ≤ 2. In this case (3.7) leads to the inequality

1

2

d

dt
(∥um∥22) ≤

1

2

d

dt
(∥um∥22) + aϵ(∥∇um∥22) ∥∇um∥22(3.9)

≤ C∥um∥β+q++σ
2 + C∥um∥β2 +

1

2
∥um∥22 +

1

2
∥f∥22

≤ C ′′ + C ′∥um∥22 +
1

2
∥f∥22

with constants C ′, C ′′ depending on β, q± but independent of m and ϵ. In-
equality (3.9) can be written in the form

d

dt

(
∥um(t)∥22e−2C′t

)
≤
(
2C ′′ + ∥f∥22

)
e−2C′t, t ∈ (0, T ),

and integrated:

∥um(t)∥22e−2C′t ≤ ∥um0 ∥22 +
C ′′

C ′

(
1− e−2C′t

)
+ ∥f∥22,QT

.

It follows that

∥um(t)∥22 ≤ C
(
1 + ∥u0∥22

)
e2C

′T + e2C
′T ∥f∥22,QT

.

Gathering this estimate with (3.9) and integrating we obtain the inequality∫ t

0

aϵ(∥∇um|22)∥∇um∥22 ds ≤ C

with a constant C independent of m and ϵ. □
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Remark 3.3. In the case τ ≥ 2 estimate (3.5) leads to the inequality

(3.10) ∥um(t)∥22,Ω +

∫ t

0

∥∇um(s)∥τ2 ds ≤ C
(
1 + ∥u0∥22 + ∥f∥22,QT

)
.

Lemma 3.4. Let in the conditions of Lemma 3.2, u0 ∈ H1
0 (Ω). If 2(q+− 1) <

τ , then

(3.11) ∥∂tum∥2,QT
+

∫ ∥∇um∥2
2

0

aϵ(s) ds ≤ C

with a constant C depending on q±, β, τ , Cb, ∥u0∥H1
0 (Ω), ∥f∥2,QT

, T and∫ ∥∇u0∥2
2

0

a(s) ds.

Proof. Multiplying each of equations (3.4) by g′jm(t) and summing the results
we arrive at the equality

∥∂tum∥22 + aϵ(∥∇um∥22)
∫
Ω

∇um · ∇(∂tum) dx

= Cb∥um∥β2
∫
Ω

|um|q(z)−2um log |um|∂tum dx+

∫
Ω

f∂tum dx.

Using assumptions (A.1)-(A.3), the inequalities of Hölder and Poincaré, and
the Young inequality we find that

∥∂tum∥22 +
1

2

d

dt

(∫ ∥∇um∥2
2(t)

0

aϵ(s)ds

)

≤ |Cb|∥um∥β2
∫
Ω

|um|q(z)−1|| log |um||∂tum| dx+ C∥f∥22 +
1

4
∥∂tum∥22

≤ |Cb|∥um∥β2∥|um|q(x,t)−1 log |um|∥2 ∥∂tum∥2 + C∥f∥22 +
1

4
∥∂tum∥22

≤ 1

2
∥∂tum∥22 + C ′∥um∥2β2 ∥|um|q(z)−1 log |um|∥22 + C ′′∥f∥22.

Simplifying and using (3.5) we obtain

(3.12) ∥∂tum∥22 +
d

dt

(∫ ∥∇um∥2
2(t)

0

aϵ(s)ds

)
≤ C∥|um|q−1 log |um|∥22 + 2C ′′∥f∥22

with a constant C independent of m and ϵ.
Let τ > 2. By assumption (A.2) and choosing σ such that 2(q(z) − 1) <

2(q(z) − 1) + σ ≤ 2N
N−2 , which yields ∥um∥2(q(·)−1)+σ ≤ C∥∇um∥2. On the

other hand, by virtue of (2.1) and Lemma 2.2 for a.e. t ∈ (0, T )

∥|um|q−1 log |um|∥22(3.13)

=

∫
Ω

|um|2(q(z)−1)| log |um||2 dx
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≤ C1

∫
Ω

|um|2(q(z)−1)+σ dx+ C2

≤ C1 max
{
∥um∥2(q

+−1)+σ
2(q(·)−1)+σ, ∥um∥2(q

−−1)+σ
2(q(·)−1)+σ

}
+ C2

≤ Cmax
{
∥∇um∥2(q

+−1)+σ
2 , ∥∇um∥2(q

−−1)+σ
2

}
+ C2.

Thus,

∥∂tum∥22 +
d

dt

(∫ ∥∇um∥2
2(t)

0

aϵ(s)ds

)
≤ C

(
1 + ∥∇um∥2(q

+−1)+σ
2

)
+ 2C ′′∥f∥22

with an independent of m and ϵ constant C. Taking into account the assump-
tion 2(q+ − 1) < 2(q+ − 1)+ σ ≤ τ and applying the Young inequality, we find
that

∥∂tum∥22 +
d

dt

(∫ ∥∇um∥2
2(t)

0

aϵ(s)ds

)
≤ C (1 + ∥∇um∥τ2) + 2C ′′∥f∥22.

Integrating this inequality in t and using (3.5) together with (3.10) we obtain
(3.11) in the case τ > 2.

Let τ ∈ (1, 2] and β + q+ < 2 which yields 2(q − 1) < 2. Then by Lemma
2.2 and (3.5) for a.e t ∈ Ω

∥|um|q−1 log |um|∥22 =

∫
Ω

|um|2(q(·,t)−1)| log |um||2 dx

≤ C1

∫
Ω

|um|2(q(·,t)−1)+σ dx+ C2

≤ C(|Ω|, q±)max
{
∥um∥2(q

+−1+σ)
2 , ∥um∥2(q

−−1)+σ
2

}
+ C2

≤ C

and (3.12) can be continued in the following way:

∥∂tum∥22 +
d

dt

(∫ ∥∇um∥2
2(t)

0

aϵ(s)ds

)
≤ C + 2C ′′∥f∥22.

Integrating in t and plugging the estimates of Lemma 3.2 we obtain (3.11). □

Lemma 3.5. Let us assume that one of the following conditions is fulfilled:

(1) τ > 2 and β + q+ < τ ≤ 2(β + q−),
(2) τ ∈ (1, 2] and 2(q+ + β − 1) < τ .

Then

(3.14) sup
(0,T )

∥∇um(t)∥22 +
∫ T

0

aϵ(∥∇um∥22)∥∆um∥22 ds ≤ C

with a constant C depending on ∥u0∥H1
0 (Ω), ∥∇f∥2,QT

, β, τ , q±, T , but inde-
pendent of m and ϵ.
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Proof. Multiplying each of equations (3.4) by λjgjm(t), summing up, integrat-
ing by parts, and applying Young’s inequality we obtain the inequality

1

2

d

dt

(
∥∇um∥22

)
+ aϵ

(
∥∇um∥22

)
∥∆um∥22(3.15)

≤ |Cb|∥um∥β2
∫
Ω

|um|q(x,t)−1 |∆um|| log |um|| dx+

∫
Ω

|∇um||∇f | dx

≤ 1

2
aϵ

(
∥∇um∥22

)
∥∆um∥22 +

1

2

C2
b ∥um∥2β2

aϵ(∥∇um∥22)
∥|um|q(x,t)−1 log |um|∥22

+
1

2
∥∇um∥22 +

1

2
∥∇f∥22

≡ 1

2
aϵ

(
∥∇um∥22

)
∥∆um∥22 +

1

2
∥∇um∥22 +

1

2
∥∇f∥22 + J.

Let τ > 2. Then β + q+ < τ ,

aϵ(∥∇um∥22) ≥ Ca(ϵ+ ∥∇um∥22)
τ
2−1 ≥ Ca∥∇um∥τ−2

2 ,

and by (3.13)

J =
C2

b ∥um∥2β2
aϵ(∥∇um∥22)

∥|um|q(x,t)−1 log |um|∥22(3.16)

≤ C∥∇um∥2β2
Ca∥∇um∥τ−2

2

(
C1 max

{
∥∇um∥2(q

−−1)+σ
2 , ∥∇um∥2(q

+−1)+σ
2

}
+ C2

)
≤ C3 max

{
∥∇um∥2(β+q−)−τ+σ

2 , ∥∇um∥2(β+q+)−τ+σ
2

}
+ C4 ∥∇um∥2(β+1)−τ

2

≤ C ′ ∥∇um∥τ2 + C ′′,

with constants C, C ′, C ′′ depending on τ , β, Ca, Cb, q
±. Then

d

dt

(
∥∇um∥22

)
+ aϵ(∥∇um∥22)∥∆um∥22 ≤ C (1 + ∥∇um∥τ2) + ∥∇f∥22,

and (3.14) follows after integration in t and application of (3.10).
Let τ ∈ (1, 2]. For every ϵ ∈ (0, 1)

aϵ(∥∇um∥22) ≥ Ca(ϵ+ ∥∇um∥22)
τ
2−1 ≥ Ca

(
1 + ∥∇um∥22

) τ
2−1

and

1

aϵ(∥∇um∥22)
≤ C

(
1 + ∥∇um∥22

)1− τ
2 ≤ C

(
1 + ∥∇um∥2−τ

2

)
≤ C

(
1 + ∥∇um∥22

)
.

By assumption (A.3), in this case 2(q++β− 1) < τ , which is equivalent to the
inequality 2(q+ + β)− τ < 2 and yields 2(β + 1)− τ < 2. Then taking σ such
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that 2(q+ + β)− τ + σ < 2 and employing Young’s inequality we have

J ≤ C
(
1 + ∥∇um∥2−τ

2

)
C5 max

{
∥∇um∥2(q

−+β−1)+σ
2 , ∥∇um∥2(q

++β−1)+σ
2

}
+ C6 ∥∇um∥2β2

≤ C
(
1 + ∥∇um∥2−τ

2

) (
1 + ∥∇um∥2(q

++β−1)+σ
2 + ∥∇um∥2β2

)
≤ C

(
1 + ∥∇um∥2(q

++β)−τ+σ
2 + ∥∇um∥2(β+1)−τ

2

)
≤ C

(
1 + ∥∇um∥22

)
with a constant depending on τ , q±, β, but independent of m and ϵ. It follows
now from (3.15) that

d

dt

(
∥∇um∥22

)
≤ C

(
1 + ∥∇um∥22

)
+ C ′∥∇f∥22,

∥∇um(0)∥22 ≤ ∥∇u0∥22.
Then

∥∇um∥22e−Ct ≤ ∥∇u0∥22 +
(
1− e−Ct

)
+ C ′∥∇f∥22,QT

,

whence the uniform estimate

∥∇um(t)∥22 ≤ C.

Returning to (3.15) and using this estimate we obtain the inequality

d

dt

(
∥∇um∥22

)
+ aϵ(∥∇um∥22)∥∆um∥22 ≤ C,

whence (3.14) in the case (2). □

Lemma 3.6. Let us assume that the conditions of Lemma 3.5 are fulfilled and

either 2 ≤ τ < min{3, β + 2} or τ ∈ (1, 2).

Then

(3.17) ∥∆um∥L2(QT ) ≤ C

with a constant C independent of m and ϵ.

Proof. Let us rewrite inequality (3.15) in the form

1

aϵ(∥∇um∥22)
d

dt

(
∥∇um∥22

)
+ ∥∆um∥22 ≤ J

aϵ(∥∇um∥22)
+

∥∇um∥2∥∇f∥2
aϵ(∥∇um∥22)

= I +
∥∇um∥2∥∇f∥2
aϵ(∥∇um∥22)

with J defined in (3.16).
Let 2 ≤ τ < 3. Since β+ q−+1− τ > β+2− τ > 0 by assumption, we have

I ≤ C∥∇um∥2β+2(2−τ)
2

(
max

{
∥∇um∥2(q

+−1)+σ
2 , ∥∇um∥2(q

−−1)+σ
2

}
+ 1
)

≤ Cmax
{
∥∇um∥2(β+q−+1−τ)+σ

2 , ∥∇um∥2(β+q++1−τ)+σ
2

}
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+ C∥∇um∥2β+2(2−τ)
2

≤ C
(
1 + ∥∇um∥2(β+q++1−τ)+σ

2 + ∥∇um∥2(β+2−τ)
2

)
,

where C = C(Ca, Cb, β, τ, q
±),

∥∇um∥2∥∇f∥2
aϵ(∥∇um∥22)

≤ 1

Ca
(ϵ+ ∥∇um∥22)

2−τ
2 ∥∇um∥2∥∇f∥2

≤ 1

Ca
(ϵ+ ∥∇um∥22)

3−τ
2 ∥∇f∥2.

By Lemma 3.5, ∥∇um∥22 ≤ C uniformly with respect to m and ϵ, whence

(3.18)
d

dt

(∫ ∥∇um(t)∥2
2

0

ds

aϵ(s)

)
+ ∥∆um(t)∥22 ≤ C ′

and (3.17) follows after integration in t:∫ ∥∇um(t)∥2
2

0

ds

aϵ(s)
+ ∥∆um∥22,QT

≤ C +

∫ ∥∇u0∥2
2

0

ds

aϵ(s)
.

The integral on the right-hand side converges because∫ ∥∇u0∥2
2

0

ds

aϵ(s)
≤ 1

Ca

∫ ∥∇u0∥2
2

0

ds

(ϵ+ s2)
τ
2−1

≤ 1

Ca

∫ ∥∇u0∥2
2

0

ds

sτ−2

and τ < 3 by assumption.
In the case τ ∈ (1, 2) the estimate (3.17) follows directly from (3.14) and

(A.1) because

aϵ(∥∇um∥22) ≥ Ca(ϵ+ ∥∇um∥22)
τ
2−1 ≥ Ca(1 +K)

τ
2−1, K = sup

(0,T )

∥∇um(t)∥22.
□

Lemma 3.7. Under the conditions of Lemma 3.6

(3.19)

∫ ∥∇um(t)∥2
2

0

aϵ(s) ds+

∫
QT

a2ϵ(∥∇um∥22)
(
|∇um|2 + (∆um)2

)
dz ≤ C

with a constant C depending on data but independent of m and ϵ.

Proof. Let us multiply each of equations (3.4) by aϵ(∥∇um∥22)λjgjm(t) and sum
up:

aϵ(∥∇um∥22)
∫
Ω

∂tum∆um dx+ a2ϵ(∥∇um∥22)
∫
Ω

∇um · ∇(∆um) dx

= Cb∥um∥β2aϵ(∥∇um∥22)
∫
Ω

|um|q(z)−2um log |um|∆um dx

+ aϵ(∥∇um∥22)
∫
Ω

∆umf dx.
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Integrating by parts in Ω each term in the right-hand side and applying the
inequalities of Cauchy and Young to the left-hand side, we arrive at the in-
equality

1

2
aϵ(∥∇um∥22)

d

dt

(
∥∇um∥22

)
+ a2ϵ(∥∇um∥22)∥∆um∥22

≤ C∥um∥2β2
(
1 + ∥∇um∥2(q

+−1)+σ
2

)
+

1

2
a2ϵ(∥∇um∥22)∥∆um∥22 + C ′∥f∥22.

Simplifying, integrating the resulting inequality in t, and plugging the estimates
of Lemmas 3.2, 3.5 on ∥um(t)∥22, ∥∇um(t)∥22 we obtain

∥aϵ(∥∇um∥22)∆um∥22,QT
≤ C.

To obtain (3.19) we notice that since ∥∆v∥2 is an equivalent norm of the
space H2(Ω) ∩ H1

0 (Ω), it follows from the embedding theorem that for v ∈
L2(0, T ;H2(Ω) ∩H1

0 (Ω))

∥∇v(t)∥2,Ω ≤ C∥∆v(t)∥2,Ω a.e. in (0, T )

and

∥aϵ(∥∇um∥22)∇um∥22,QT
=

∫ T

0

a2ϵ(∥∇um(t)∥22)∥∇um(t)∥22 dt

≤ C∥aϵ(∥∇um∥22)∆um∥22,QT
. □

Remark 3.8. The a priori estimates of this section are summarized as follows:
let us assume that the exponents τ , β, q± satisfy the conditions

(3.20)
(a)

q+ < 2(N−1)
N−2 if N > 2,

q+ = any number from (1,∞) if N = 2,

(b) q+ + β < max{2, τ}, 2(β + q+ − 1) < τ < min{3, β + 2}.

Then for every u0 ∈ H1
0 (Ω), f ∈ L2(0, T ;H1

0 (Ω)) the solutions um of problem
(3.3) satisfy the estimate

sup
(0,T )

∥um(t)∥2H1
0 (Ω) + ∥∂tum∥L2(QT ) + ∥∆um∥2L2(QT )(3.21)

+

∫
QT

a2ϵ(∥∇um∥22)
(
|∇um|2 + (∆um)2

)
dz ≤ C

with a constant C depending on Ca, Cb, β, τ , q
±, T , ∥u0∥H1

0 (Ω)), ∥f∥2,QT
and

∥∇f∥2,QT
, but independent of m and ϵ. Since ∥∆v∥L2(Ω) is equivalent to the

norm of H2(Ω) ∩H1
0 (Ω), we also have the uniform estimate

(3.22) ∥um∥L2(0,T ;H2(Ω)∩H1
0 (Ω)) ≤ C.

Remark 3.9. If Cb = 0, a revision of the derivation of estimate (3.21) shows
that it remains valid under the assumption (A.3)(ii): 1 < τ < 3.
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3.3. Solution of the regularized problem: proof of Lemma 3.1

By convention, we denote by u ≡ uϵ the solution of the regularized problem
(3.1) with a fixed ϵ > 0 and by um ≡ uϵ,m the finite-dimensional approximations
of u. Because of the uniform estimates (3.21) the sequence {um} contains
a subsequence, which we assume coinciding with the whole sequence, and a
function u ≡ uϵ such that:

(3.23)


um ⇀ u weakly-star in L∞(0, T ;H1

0 (Ω)),

∂tum ⇀ ∂tu in L2(QT ),

um ⇀ u in L2(0, T ;H2(Ω) ∩H1
0 (Ω)).

Since H2(Ω) ∩ H1
0 (Ω) ↪→ H1

0 (Ω) ⊂ L2(Ω), it follows from (3.21), (3.22) that
{um} is precompact in L2(0, T ;H1

0 (Ω)) [30, Th. 5]. Thus,

(3.24)

{
um → u in W := L2(0, T ;H1

0 (Ω)),

∥um∥W → ∥u∥W and ∥um(t)∥H1
0 (Ω) → ∥u(t)∥H1

0 (Ω) a.e. in (0, T ).

By continuity

(3.25)

{
aϵ(∥∇um(t)∥22) → aϵ(∥∇u(t)∥22),

∥um(t)∥β2 → ∥u(t)∥β2 a.e. in (0, T ).

Moreover, the inclusions ut ∈ L2(QT ) and u ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) yield

u ∈ C0([0, T ];H1
0 (Ω))

(after possible redefining on a set of zero measure in (0, T )).
By virtue of (3.24) um → u a.e. in QT . On the other hand by Lemma 2.2,

condition (A.2) and (3.21) for a.e t ∈ Ω we have∫
Ω

||um|q−2um log |um||q
′
dx =

∫
Ω

|um|q| log |um||q
′
dx

≤ C1

∫
Ω

|um|q+σ dx+ C2

≤ C∥∇um∥q
++σ

2 + C ′ ≤ C,

where q′(z) = q(z)
q(z)−1 .

Hence using the uniform in m estimate ∥|um|q−2um log |um|∥Lq′(·)(QT ) ≤ C

and an imitation of the proof of [22, Lemma 1.3, Ch. 1] shows that

(3.26) |um|q(z)−2um log |um|⇀ |u|q(z)−2u log |u| in Lq′(·)(QT ).

Then

∥um(t)∥β2 |um|q(z)−2um log |um|⇀ ∥u(t)∥β2 |u|q(z)−2u log |u| in Lq′(·)(QT ).

It follows from (3.24), (3.25) and the estimate ∥aϵ(∥∇um∥22)∇um∥2 ≤ C that

aϵ(∥∇um∥22)∇um ⇀ aϵ(∥∇u∥22)∇u in (L2(QT ))
n.



582 U. SERT

By the method of construction, the functions um satisfy the identity∫
QT

(
∂tumφ+ aϵ(∥∇um∥22)∇um · ∇φ− Cb∥um∥β2 |um|q(z)−2um log |um|φ

)
dz

=

∫
QT

fφ dz

for every φ ∈ Pk = span{ψ1, . . . , ψk}, k ≤ m. Letting m → ∞ we find that
u = limum satisfies the same identity with any φ ∈ Pk. Since Pk are dense in
V = {v ∈ L2(0, T ;W 1,2

0 (Ω)) | ∂tv ∈ L2(QT )}, the same is true for every ψ ∈ V .
The initial condition for u ∈ C([0, T ];L2(Ω)) is fulfilled by continuity.

4. Proof of Theorem 2.3: existence of a strong solution of problem
(1.1)

For the proof we need several auxiliary technical assertions.

Proposition 4.1. For all ξ, ζ ∈ (L2(Ω))n and ϵ ≥ 0

(aϵ(∥ξ∥22)ξ − aϵ(∥ζ∥22)ζ, ξ − ζ)2,Ω

≥ (aϵ(∥ξ∥22)∥ξ∥2 − aϵ(∥ζ∥22)∥ζ∥2)(∥ξ∥2 − ∥ζ∥2).
Proof. It is straightforward to check that

(aϵ(∥ξ∥22)ξ − aϵ(∥ζ∥22)ζ, ξ − ζ)2,Ω

= aϵ(∥ξ∥22)∥ξ∥22 −
(
aϵ(∥ξ∥22) + aϵ(∥ζ∥22)

)
(ξ, ζ)2 + aϵ(∥ζ∥22)∥ζ∥22

≥ aϵ(∥ξ∥22)∥ξ∥22 −
(
aϵ(∥ξ∥22) + aϵ(∥ζ∥22)

)
∥ξ∥2∥ζ∥2 + aϵ(∥ζ∥22)∥ζ∥22

= (aϵ(∥ξ∥22)∥ξ∥2 − aϵ(∥ζ∥22)∥ζ∥2)(∥ξ∥2 − ∥ζ∥2). □

Proposition 4.2. If a(·) satisfies condition (A.1), then for all ξ, ζ ∈ (L2(Ω))n

and ϵ ≥ 0 (
aϵ(∥ξ∥22)ξ − aϵ(∥ζ∥22)ζ, ξ − ζ

)
2,Ω

≥ 0.

Proof. Let ϵ > 0. Due to Proposition 4.1 it is sufficient to show that

(aϵ(s
2)s− aϵ(r

2)r)(s− r) ≥ 0 ∀s, r ∈ R+ and ϵ ≥ 0.

Set z =
√
ϵ+ s2. By the definition of aϵ and assumption (A.1)

(aϵ(s
2)s)′ = (a(ϵ+ s2)s)′ =

(
a(ϵ+ s2)

√
ϵ+ s2 · s√

ϵ+ s2

)′

=

(
a(z2)z

(
s√
ϵ+ s2

))′

s

=
(
a(z2)z

)′
z

s2

ϵ+ s2
+ ϵ

a(z2)z

(ϵ+ s2)
3
2

≥ 0.

By the Lagrange mean value theorem, for every s, r > 0 there exists µ =
θs+ (1− θ)r with θ ∈ (0, 1) such that

(aϵ(s
2)s− aϵ(r

2)r)(s− r) = (aϵ(µ
2)µ)′(s− r)2 ≥ 0.

If ϵ = 0, the assertion is an immediate consequence of the Lagrange theorem.
□
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Let {uϵk} be a sequence of solutions of the regularized problem (3.1), ϵk → 0.
The functions uϵk satisfy the uniform estimates (3.21), which allow one to
extract a subsequence (we assume that it coincides with {uϵk}) such that

(4.1)



∂tuϵk⇀∂tu in L2(QT ),

uϵk → u weakly in L2(0, T ;H2(Ω) ∩H1
0 (Ω)) and

strongly in L2(0, T ;H1
0 (Ω)),

aϵk(∥∇uϵk(t)∥22)∇uϵk⇀U in (L2(QT ))
n,

∥uϵk(t)∥
β
2 |uϵk |q(z)−2uϵk log |uϵk |⇀∥u(t)∥β2 |u|q(z)−2u log |u| in Lq′(·)(QT )

for some u ∈ L2(0, T ;H2(Ω) ∩ H1
0 (Ω)) and U ∈ (L2(QT ))

n. For every test-
function φ ∈ V the solution of the regularized problem uϵk satisfies the identity∫

QT

(
∂tuϵkφ+ aϵk(∥∇uϵk∥22)∇uϵk · ∇φ

)
dz(4.2)

=

∫
QT

(
Cb∥uϵk∥

β
2 |uϵk |q(z)−2uϵk log |uϵk |φ+ fφ

)
dz.

Let us take in (4.2) φ = uϵk . Since uϵk , ∂tuϵk ∈ L2(QT ), the formula of
integration by parts holds: ∀t, t+ h ∈ [0, T ]

(4.3)

∫ t+h

t

∫
Ω

uϵk∂tuϵk dxds =
1

2
∥uϵk(s)∥22

∣∣s=t+h

s=t
.

Using (4.3) in (4.2) and then passing to the limit as ϵk → 0 we arrive at the
equality

(4.4)
1

2
∥u(s)∥22

∣∣s=T

s=0
+

∫
QT

U · ∇u dz−Cb

∫
QT

∥u∥β2 |u|q log |u| dz−
∫
QT

fu dz=0.

By Proposition 4.1, for every φ ∈ V∫
QT

aϵk(∥∇uϵk∥22)∇uϵk · ∇uϵk dz

=

∫
QT

aϵk(∥∇uϵk∥22)∇uϵk · ∇(uϵk − φ) dz +

∫
QT

aϵk(∥∇uϵk∥22)∇uϵk · ∇φdz

≥
∫
QT

a(∥∇φ∥22)∇φ · ∇(uϵk − φ) dz +

∫
QT

aϵk(∥∇uϵk∥22)∇uϵk · ∇φdz

+

∫
QT

(
aϵk(∥∇φ∥22)− a(∥∇φ∥22)

)
∇φ · ∇(uϵk − φ) dz

= J1 + J2 + J3.

By (4.1)

J1 →
∫
QT

a(∥∇φ∥22)∇φ · ∇(u− φ) dz, J2 →
∫
QT

U · ∇φdz as ϵk → 0.
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According to assumption (A.1) there exists µ ≥ 1 such that

a(∥∇φ∥22)∥∇φ∥2 ≤ Cµ

(
∥∇φ∥µ−1

2 + ∥∇φ∥2
)
,

aϵk(∥∇φ∥22)∥∇φ∥2 =
(
a(ϵk + ∥∇φ∥22)(ϵk + ∥∇φ∥22)

1
2

) ∥∇φ∥2
(ϵk + ∥∇φ∥22)

1
2

≤ Cµ

(
(ϵk + ∥∇φ∥22)

µ−1
2 + (ϵk + ∥∇φ∥22)

1
2

)
≤ C

(
1 + ∥∇φ∥µ−1

2 + ∥∇φ∥2
)
, C = C(Cµ, µ).

Let us represent

J3 =

∫ T

0

hϵk(t) dt, hϵk =
(
aϵk(∥∇φ∥22)− a(∥∇φ∥22)

)
(∇φ,∇(uϵk − φ))2,Ω.

The sequence {hϵk} is uniformly bounded: for every t ∈ [0, T ]

|hϵk | ≤
(
aϵk(∥∇φ∥22) + a(∥∇φ∥22)

)
|(∇φ,∇(uϵk − φ))2,Ω|

≤
(
aϵk(∥∇φ∥22)∥∇φ∥2 + a(∥∇φ∥22)∥∇φ∥2

)
∥∇(uϵk − φ)∥2

≤ C
(
1 + ∥∇φ∥µ−1

2 + ∥∇φ∥2
)
∥∇(uϵk − φ)∥2

≤ C

(
sup
(0,T )

∥uϵk(t)∥H1
0 (Ω) + sup

(0,T )

∥φ(t)∥H1
0 (Ω)

)(
2 + ∥∇φ∥µ−1

2 + ∥∇φ∥2
)
.

It follows from Hölder’s inequality and the inclusion φ ∈ C0([0, T ];H1
0 (Ω)) that

|hϵk | ≤ C ′(1 + ∥∇φ(t)∥22) ∈ C0[0, T ].

Since for a.e. t ∈ (0, T )

|hϵk | ≤
∣∣aϵk(∥∇φ∥22)∥∇φ∥2 − a(∥∇φ∥22)∥∇φ∥2

∣∣ ∥∇(uϵk − φ)∥2 → 0 as ϵk → 0,

it follows from the dominated convergence theorem that J3 → 0 as ϵk → 0.
Combining now (4.2) with (4.4) and letting ϵk → 0 we arrive at the inequality∫

QT

(a(∥∇φ∥22)∇φ− U)∇(u− φ) dz ≥ 0

with the arbitrary φ ∈ L2(0, T ;H2(Ω) ∩ H1
0 (Ω)), φt ∈ L2(QT ). Choosing

φ = u + λψ with λ > 0 and ψ ∈ L2(0, T ;H2(Ω) ∩ H1
0 (Ω)), ψt ∈ L2(QT ),

simplifying the result and letting λ→ 0+ leads to the inequality∫
QT

(a(∥∇u∥22)∇u− U)∇ψ dz ≤ 0 ∀ψ ∈ V,

which is possible only if the previous relation is the equality. It follows now
from (4.2) as ϵk → 0 that the function u = limuϵk is a strong solution of
equation (1.1). The regularity properties of the limit u(z) follow from the
uniform estimates (3.21) for the approximations uϵ,m.
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