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SELF-SIMILAR SOLUTIONS FOR THE 2-D BURGERS
SYSTEM IN INFINITE SUBSONIC CHANNELS

Kyungwoo Song

Abstract. We establish the existence of weak solutions in an infinite
subsonic channel in the self-similar plane to the two-dimensional Burgers
system. We consider a boundary value problem in a fixed domain such
that a part of the domain is degenerate, and the system becomes a second
order elliptic equation in the channel. The problem is motivated by the
study of the weak shock reflection problem and 2-D Riemann problems.
The two-dimensional Burgers system is obtained through an asymptotic
reduction of the 2-D full Euler equations to study weak shock reflection
by a ramp.

1. Introduction

In this paper, we are considering self-similar solutions of the two-dimensional
Burgers system

(1.1)

{
ut + uux + vy = 0,

vx − uy = 0,

where u, v are the velocity components in the 2-D full Euler equations. Brio and
Hunter [1] obtained the system through an asymptotic reduction of the 2-D full
Euler equations to study weak shock reflection by a ramp. C. S. Morawetz [6]
also established the system to model shock reflection by asymptotic reduction
from the transonic full potential equation.

To simplify the oblique-shock-reflection problem, it is assumed generally
the wedge angle is small, or the incident shock is weak. It is known that
various conditions on the angle and the shock strength yield regular or irregular
reflections. When, in particular, the angle is in the order of the square-root
of the shock strength, the system arises to describe the solution at the core of
wave-wall interaction. So it is expected that (1.1) contains the information on
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transition of regular reflection to irregular reflection which includes the various
Mach reflections and von Neumann wave, etc. More details are in [10]. The 2-
D Burgers system also arises in nonlinear acoustics and nonlinear geometrical
optics [8]. This system of equations is also called unsteady transonic small
disturbance equations.

In weak regular reflection, the state behind the reflected shock is supersonic
and constant. The flow becomes subsonic further downstream and the system
of equations in self-similar coordinates degenerates at the sonic line. The re-
flected shock becomes transonic and begins to curve there. Since the position
of the shock is unknown, the shock reflection problem reduces a free boundary
problem. Several results have been obtained on degenerating elliptic equations
for the system. Refer to [2, 3] for free boundary problems of transonic small
disturbance equations on bounded domains. In [4], a C2-solution of a system
of 2-D Burgers equations on a fixed bounded domain was obtained through
quasilinear degenerate elliptic problems.

In self-similar coordinates (ξ, η) = (x/t, y/t) the system becomes

(1.2)

{
−ξuξ − ηuη + (u2/2)ξ + vη = 0,

−vξ + uη = 0.

Introducing the potential function ϕ such that ϕξ = u, ϕη = v, we can rewrite
(1.2) in the form

(1.3) (ϕξ − ξ)ϕξξ − ηϕξη + ϕηη = 0.

This is a second order quasilinear equation of mixed type and the coefficients
of the second order terms depend on the first order derivatives. We can also
derive an equation for u directly from (1.2) in the form

(1.4) (u− ξ)uξξ − ηuξη + uηη + (uξ − 1)uξ = 0

whose coefficients of the second order terms depend on (u, ξ, η) which is less
nonlinear. We also note both forms (1.2) and (1.4) have the same characteristics

dξ

dη
= −η

2
±

√
η2

4
+ ξ − u,

which change types across the parabolic line u = ξ+η2/4. In another coordinate
system (ρ, η) with ρ = ξ + η2/4, the 2-D Burgers system becomes

(u− ρ)uρ − η

2
uη + vη = 0,

η

2
uρ − vρ + uη = 0.

We note that for a given solution u(ξ, η), the hyperbolic region is η2

4 +ξ−u =
ρ − u > 0 on which the flow become supersonic and the elliptic region is
η2

4 + ξ − u = ρ − u < 0 on which the flow become subsonic. That is, for a
given constant state (u0, v0), the system is hyperbolic outside ρ = ξ + η2

4 =
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u0 and elliptic inside. So the parabola is a degenerating boundary and the
unbounded elliptic region is obtained. Eliminating the variable v from two
previous equations and introducing new variables x = ρ, y = η to make the
degenerate boundary straight, we have a second order differential equation for
u which is a mixed-type equation:

(1.5) (u− x)uxx + uyy + (ux − 1
2
)ux = 0,

or

(1.6) ((u− x)ux)x + uyy +
1
2
ux = 0.

In the paper, we are interested in subsonic solutions of the 2-D Burgers
system. We believe that it is helpful to fully understand the subsonic regions
locally before we solve the 2-D Burgers system in the whole plane. Thus it is
necessary to investigate the property of solutions in unbounded elliptic regions
and then a global solution to the 2-D Burgers system can be patched together by
pieces along characteristic lines, sonic curves, shock waves or other boundaries.
Hence it is meaningful to consider the problem in an infinite channel which will
be turned out to be an elliptic region. Let

Ω = {−∞ < x < 0,−1 < y < 1} ⊂ R2

be an infinite channel.
In this paper, we find a weak solution u = u(x, y) to the problem

(1.7)

{
(u− x)uxx + uyy + (ux − 1

2 )ux = 0,

u
∣∣
∂Ω

= g,

where the function g ∈ C0,β(∂Ω) (0 < β < 1) satisfies g > x on ∂Ω \ {x = 0},
g = 0 on {x = 0} ⊂ ∂Ω, and g → −N as x→ −∞ for some constant N > 0.

Our approach is based on the weak solution approach close to those of Y.
Zheng [9] and K. Song [7] applied to the pressure-gradient system.

Theorem 1.1. Let Ω be an infinite channel in R2. Then there exists a weak
solution u to (1.7) with u ∈ H1

loc(Ω). The solution takes its boundary value in
the sense (u − g)3/2χ ∈ H1

0 (Ω) for a localizer χ of the boundary, where g is a
bounded smooth extension to Ω. In addition, u− x > 0 in the whole domain.

2. Main results

Let us regard the domain Ω as Ω =
⋃∞

j=1 Ωj where

Ωj = Ω ∩ {(x, y) ∈ R2| − j < x < 0}
is a bounded subdomain with Ωj ↗ Ω. We extend the boundary data g to the
whole domain such that g ∈ C2(Ω) ∩ C0,β(Ω) satisfies g > x and

max
0≤|α|≤2

sup
Ω
|Dαg| <∞.
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Then we consider a Dirichlet problem of (1.5) in each bounded subdomain Ωj

with a boundary condition g
∣∣
∂Ωj

.
Before we proceed, we cite some useful results from [4]. In [4], the existence

and regularity of solutions of the 2-D Burgers system in a bounded domain U
with a proper boundary condition h

∣∣
∂U

has been considered. Since the original
equation (1.5) is quasilinear, they consider a modified regularized equation

(2.1)
(
(A(x, y, u) + ε)ux

)
x

+ uyy +
1
2
ux = 0

in order to get an elliptic equation, where

A(x, y, z) =
{
z − x : z − x ≥ 0

0 : z − x < 0.

It is shown that there exists a solution uε ∈ C2,α(U) ∩ C0,α(U) of (2.1) in a
bounded domain U with a uniform exterior cone condition on ∂U for some
0 < α < 1 and h ∈ W 1,2(U) ∩ C0,β(U) (Theorem 2.1 in [4]). We point out
this result is still valid for the data h ∈ C2(U) ∩ C0,β(U) with |D2h| < ∞.
According to Lemma 2.4 in [4], the solution uε satisfies uε − x > 0 on U .
Finally, they have showed the existence of the limit solution

(2.2) u ∈ C2(U) ∩ C0(U)

satisfying u > h (Theorem 4.2 in [4]). On the other hand, the equation (2.1)
becomes

(2.3) ((u− x+ ε)ux)x + uyy +
1
2
ux = 0.

Now in order to get the maximum principle we regard (2.3) as a linear equation
and then apply the Schauder fixed point theory as in [4]. Then the limit solution
u in (2.2) satisfies

|u| ≤ max
∂U

|h| in U.

Now let us go back to the 2-D Burgers system in each bounded subdomain
Ωj and each solution uj ∈ C2(Ωj) ∩ C0(Ωj) in Ωj . Let us extend the solution
uj obtained into the whole domain:

uj =
{
uj : Ωj

g : Ω \ Ωj .

By the maximum principle and the property of g, there exists some number L
independent of j such that |uj | < L in the whole domain Ω.

In order to construct solutions of (1.5) in the whole domain we consider a
sequence of {uj}. By the method of Lemma 2.4 in [4] (or Lemma 2.3 in [7]) we
can show easily the uniform ellipticity condition. Here let us give its proof for
concreteness.
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Lemma 2.1 (Lemma 2.4 in [4]). For every nonnegative function φ ∈ C3
0 (Ω∗)

which is strictly positive in the interior of Ω∗ ∈ {Ωj} there exists a δ > 0
independent of j such that

(2.4) uj − x > δφ

on a subdomain Ω∗ for sufficiently large j.

Proof. Assume for a given function φ, it is not possible to find a δ > 0 such
that uj − x − δφ > 0 in Ω∗ for all sufficiently large j. Then for each δ > 0,
there exists a point p = (x0, y0) ∈ Ω∗ such that uj(p) − x0 − δφ(p) ≤ 0. That
is, p is a local minimum point. Then at the point

∇(uj − x− δφ) = 0,

(uj − x)(uj − x− δφ)xx + (uj − x− δφ)yy ≥ 0.

The equation (1.5) becomes

(uj − x)(uj − x− δφ)xx + (uj − x− δφ)yy + (uj − x)(x+ δφ)xx

+ (x+ δφ)yy + (δφx +
1
2
)(δφx + 1) = 0.(2.5)

We note that the left hand side of (2.5) is strictly positive at the point p if we
take small enough δ > 0 such that

1
2

+ δ
(
(uj − x)φxx + φyy + δφ2

x +
3
2
φx

)
> 0

on Ω∗. Thus we are led to a contradiction. ¤
Define ψj := uj − g so that we have a zero boundary condition. Then we

have

(ψj + g − x)(ψj + g)xx + (ψj + g)yy

+ ((ψj + g)x − 1
2
)(ψj + g)x = 0.(2.6)

Let us show the existence of a subsequence {ψjk} of the sequence {ψj} and its
limit function ψ ∈ H1

loc(Ω).

Lemma 2.2. There exist a subsequence {ψjk} of the sequence {ψj} and a
function ψ ∈ H1

loc(Ω) such that

ψjk → ψ in L2
loc(Ω),

∇ψjk ⇀ ∇ψ in L2
loc(Ω) .

Proof. Let Ωj be a subdomain and ΩR ∈ {Ωj} with a compact K ⊂⊂ ΩR ⊂ Ωj .
Define a non-negative function ζ ∈ C∞(Ω) with

ζ : Ω → [0, 1] such that ζ|K = 1 and suppζ := K0 ⊂⊂ ΩR.

For convenience, let ψj := ψ. Multiply the equation (2.6) by ψζ2 to find

ζ2ψ(ψ + g − x)(ψ + g)xx + ζ2ψ(ψ + g)yy + ζ2ψ((ψ + g)x − 1
2
)(ψ + g)x = 0.
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Integration over ΩR makes
∫
ζ2(ψ2

x(ψ + g − x) + ψ2
y)(2.7)

=
∫ {

ζ2ψ(ψ + g − x)gxx − 2ζζxψ(ψ + g − x)ψx

+ζ2ψψxgx +
1
2
ζ2ψψx + ζ2gyyψ − 2ζζyψψy + ζ2g2

xψ −
1
2
ζ2ψgx

}
.

If we use the Cauchy inequality with ε, the above equation becomes
∫

K0

ζ2((ψ + g − x)ψ2
x + ψ2

y) ≤ C + Cε

∫

K0

ζ2ψ2
x,

where C is a constant independent of j. By (2.4), m := minK(δφ) > 0. If we
take ε > 0 so that m−Cε = m

2 , then
∫

K
(m

2 ψ
2
x+ψ2

y) dxdy ≤ C which yields that∫
K
|∇ψj |2 dxdy ≤ C, where C is a constant depending on ΩR, independent of

j and Ωj . By standard results we get that {ψj} is bounded in H1(ΩR) and
by diagonal extraction it follows that there exist a subsequence {ψjk} of the
sequence {ψj} and a function ψ ∈ H1

loc(Ω) such that

ψjk → ψ in L2
loc(Ω), and ∇ψjk ⇀ ∇ψ in L2

loc(Ω) .

Thus we complete the proof. ¤

The next lemma improves the convergence of ∇ψjk by a nonlinear test func-
tion method in [5].

Lemma 2.3. The above weak convergence can be improved to the strong con-
vergence

∇ψjk → ∇ψ in L2
loc(Ω) .

Proof. Without loss of generality, let us consider the problem on Ω1. We choose
a compact set K in Ω1. When we consider the matrix of second order coeffi-
cients of (2.6), we find the smallest eigenvalue of the matrix is min{ψjk+g−x, 1}
which is possibly zero at only {x = 0} ⊂ ∂Ω. For simplicity of notations, let
ψjk be ψj .

We choose a non-negative function ρ ∈ C∞c (Ω) such that ρ = 1 in a compact
set K and suppρ ⊂⊂ Ω1. Let f ∈ L∞(Ω)∩W 1,2

loc (Ω). Multiply (2.6) by ρf and
integrate over Ω1 to get

∫

Ω1

ρf
{

(ψj + g − x)gxx − (ψj
x + gx − 1)ψj

x

+gyy + (ψj
x + gx)((ψj

x + gx)− 1
2
)
}

=
∫

Ω1

{
fρx(ψj + g − x)ψj

x + ρfx(ψj + g − x)ψj
x + ρyfψ

j
y + ρfyψ

j
y

}
.



2-D BURGERS SYSTEM IN INFINITE SUBSONIC CHANNELS 35

Let us take f = sinh[θ(ψj−ψ)] where θ > 0 is to be determined. Then we have
∫
θρ cosh(θ(ψj − ψ))

(
(ψj

x − ψx)(ψj + g − x)ψj
x + ψj

y(ψj
y − ψy)

)

=
∫
ρ sinh(θ(ψj − ψ))

(
(ψj + g − x)gxx − (ψj

x + gx − 1)ψj
x + gyy

+ (ψj
x + gx)2 − 1

2
(ψj

x + gx)
)

−
∫

sinh(θ(ψj − ψ))
(
ρx(ψj + g − x)ψj

x + ρyψ
j
y

)
.

Furthermore, this becomes
∫
θρ cosh(θ(ψj − ψ))

(
(ψj

x − ψx)2(ψj + g − x) + (ψj
y − ψy)2

)

=
∫
ρ sinh(θ(ψj − ψ))

(
(ψj + g − x)gxx − (ψj

x + gx − 1)ψj
x + gyy

+ (ψj
x + gx)2 − 1

2
(ψj

x + gx)
)

−
∫
θρ cosh(θ(ψj − ψ))

(
(ψj

x − ψx)(ψj + g − x)ψx + ψy(ψj
y − ψy)

)

−
∫

sinh(θ(ψj − ψ))
(
ρx(ψj + g − x)ψj

x + ρyψ
j
y

)
.

Note that ψj
x ⇀ ψx and ψj

y ⇀ ψy in L2 and cosh(θ(ψj − ψ))(ψj + g − x)
is bounded and converges a.e. as j → ∞ and ψj converges everywhere since
ψj → ψ in L2

loc(Ω). Then cosh(θ(ψj−ψ))(ψj +g−x)ψx and cosh(θ(ψj−ψ))ψy

converge strongly in L2. Then the third integral of the above equation converges
to zero since it is the sum of pairings of weak and strong convergent sequences.
Since sinh(θ(ψj − ψ)) → 0 as j → ∞ strongly and by similar reasons, the
fourth integral converges to zero. By the ellipticity condition with the smallest
eigenvalue 0 ≤ λ0 := min{ψj + g − x, 1} on Ω1, the above integral equation
involving four integrals becomes

∫
θλ0ρ cosh(θ(ψj − ψ))|∇(ψj − ψ)|2

≤ o(1) + C

∫
ρ| sinh(θ(ψj − ψ))|(1 + |∇ψj |2),

where C is a constant independent of j. Since |∇ψj |2 can be replaced by
2|∇ψ|2 + 2|∇(ψj − ψ)|2,

∫

Ω1

θλ0ρ cosh(θ(ψj − ψ))|∇(ψj − ψ)|2

≤ o(1) + C

∫

Ω1

ρ| sinh(θ(ψj − ψ))|+ 2C
∫

Ω1

ρ| sinh(θ(ψj − ψ))||∇ψ|2
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+2C
∫

Ω1

ρ| sinh(θ(ψj − ψ))||∇(ψj − ψ)|2.

Similarly to the above method, we have
∫
θλ0ρ cosh(θ(ψj − ψ))|∇(ψj − ψ)|2

≤ o(1) + C

∫
ρ cosh(θ(ψj − ψ))|∇(ψj − ψ)|2

since | sinh(τ)| ≤ cosh(τ) for all τ . Since ρ = 1 on K and cosh(τ) ≥ 1 for all τ ,
the above inequality becomes

(θλ− C)
∫

K

|∇(ψj − ψ)|2 ≤ o(1),

where λ is the least one between minK δφ and 1 from (2.4). Taking large enough
θ > 0, we have the strong convergence of ∇ψj to ∇ψ in L2

loc(Ω). ¤

Therefore we have a subsequence {ψjk} converging to a function ψ ∈ H1
loc(Ω)

with
ψjk → ψ in L2

loc(Ω), and ∇ψjk → ∇ψ in L2
loc(Ω).

Then ψ satisfies (2.6) in the sense of distribution.
Now we will show that the solution ψ satisfies the boundary condition using

a function χ ∈ C∞c (R2) with χ = 1 in B(p, r/2) and χ = 0 outside B(p, r) for
a point p ∈ ∂Ω. Let us call χ a localizer for a point on the boundary.

Lemma 2.4. The solution ψ satisfies the boundary condition in the sense

χψ3/2 ∈ H1
0 (Ω),

where χ = χ(·; p, r) is a localizer for a point p ∈ ∂Ω.

Proof. Define S = Ω∩B(p, r) and ψjk := ψ. In this proof C denotes a constant
depending on S.

It is clear that
∫

S
|(∇χ)ψ3/2|2 < C by the property of χ. Similarly to the

method in the proof of Lemma 2.2, we can show that
∫

S
χ2ψ|∇ψ|2 < C. As in

(2.7), we use the zero boundary conditions of ψ and χ to get
∫

S

χ2(ψ2
x(ψ + g − x) + ψ2

y) dxdy(2.8)

=
∫

S

{
χ2ψ(ψ + g − x)gxx − 2χχxψ(ψ + g − x)ψx + χ2ψψxgx

+
1
2
χ2ψψx + χ2gyyψ − 2χχyψψy + χ2g2

xψ −
1
2
χ2ψgx

}
dxdy.

If we use the Cauchy inequality with ε, the above equation becomes
∫

S

(
(ψ + g − x)χ2ψ2

x + χ2ψ2
y

)
≤ C + Cε

∫

S

χ2ψψ2
x.
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We note that ψ := ψjk is uniformly bounded in S so there exists some number
L0 > 0 such that 0 ≤ ψ/L0 < 1 in the domain. Then the fact that ψ := u−g ≤
u− x in S for sufficiently small r > 0 yields∫

S

(
χ2ψψ2

x + χ2ψψ2
y

)
≤ C + Cε

∫

S

χ2ψψ2
x.

So if we take ε > 0 small enough such that Cε << 1, then
∫

S
χ2ψ|∇ψ|2 ≤ C.

Thus
∫

S
|∇(χ(ψjk)3/2)|2 dxdy < C. And for all sufficiently large jk, χψjk = 0

on ∂S. Then for the limit function ψ we have∫

S

|∇(χψ3/2)|2 dxdy < C, χψ3/2
∣∣∣
∂S

= 0

in trace sense. Hence the solution ψ takes its boundary value in the sense of
χψ3/2 ∈ H1

0 (Ω) for a localizer χ. ¤
Therefore, using all of these lemmas we lead to Theorem 1.1 which says that

there exists a weak solution u ∈ H1
loc(Ω) of (1.7) and the solution takes its

boundary values in the sense χ(u− g)3/2 ∈ H1
0 (Ω).
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