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ROLLING STONES WITH NONCONVEX SIDES II:

ALL TIME REGULARITY OF INTERFACE AND SURFACE

Ki-ahm Lee and Eunjai Rhee

Abstract. In this paper we consider the evolution of the rolling stone
with a rotationally symmetric nonconvex compact initial surface Σ0 under
the Gauss curvature flow. Let X : Sn×[0,∞) → Rn+1 be the embeddings

of the sphere in Rn+1 such that Σ(t) = X(Sn, t) is the surface at time
t and Σ(0) = Σ0. As a consequence the parabolic equation describing
the motion of the hypersurface becomes degenerate on the interface sep-

arating the nonconvex part from the strictly convex side, since one of the
curvature will be zero on the interface. By expressing the strictly convex
part of the surface near the interface as a graph of a function z = f(r, t)
and the non-convex part of the surface near the interface as a graph of

a function z = φ(r), we show that if at time t = 0, g = 1
n
fn−1
r vanishes

linearly at the interface, the g(r, t) will become smooth up to the interface
for long time before focusing.

1. Introduction

In this work, we are going to consider the wearing process of a rolling stone
on a plane. In the figure 1, since the collision of a rolling stone on the plane
causes the erosion of the surface, the speed of the erosion is proportional to the
number of outward normal directions on a given surface area element, namely
the Gauss curvature of the convex surface. Let us denote Σ be the surface
evolving by the Gauss curvature flow and Σ∗ be the convex envelope of Σ
which is the smallest convex surface containing Σ. Then any point P on the
rolling stone Σ will propagate with the speed of Σ,

(GCF)
∂P

∂t
= K∗

+ N,

in the inward normal direction N , where K∗
+ is the Gauss curvature of Σ∗ for

P ∈ Σ ∩ Σ∗ and otherwise zero. We denote by gij the metric and a second
fundamental form of Σ and by gij and hij . We also denote the inverse of gij
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and hij by gij and (h−1)ij . The Weingarten map is given by

hj
i = gjkhki

and the eigenvalues, λ1, . . . , λn, of hj
i are called principle curvatures. The

Gauss curvature flow was introduced by Firey [14] and he showed that the
smooth compact, strictly convex hypersurfaces with some symmetry shrinks to
a round point. Tso [21] showed that the Gauss curvature flow with strictly
convex initial surface will be smooth up to a vanishing time.

Daskalopoulos and Hamilton considered the case when the initial surface
has a flat side. At the interface of the flat side and the strictly convex side, the
curvature becomes degenerate which behaves like a free boundary with finite
speed of propagation. In [5], they proved the short time existence and smooth
regularity of the surface based on a Schauder theory of a degenerate equation.
Andrews [1] showed that the C1,1 regularity of a viscosity solution before a
vanishing time of the surface. Under the same assumption of [5], Daskalopoulos
and Lee, [11], showed that the strictly convex side remains smooth up to the
focusing time of the flat side and that the optimal regularity will be C2,α for
some 0 < α < 1 when the surface is radially symmetric. They also extended
these results for any two dimensional surface. Main difference in two dimension
is that the equation is fully nonlinear while it is semilinear in one dimension
and that the equation is degenerate when the some second derivatives are
degenerate. It is noticeable that the porous medium equation is degenerate
when the density is zero and that the p-Laplace equation is degenerate when
the gradient of the density is zero.

Ishii and Mikami, [16], [17], showed the existence of a viscosity solution
to the case when the surface is not necessarily convex through the level set
approach.

We will consider the case where the initial radial symmetric surface has a
non-convex side and as a result the parabolic equation becomes degenerate
along the interface of the non-convex surface and the convex surface. In this
paper, we discuss the existence and regularity of the solution, and regularity
of the free boundary.

Let us assume that initially we have surface

Σ = Σ0 ∪ Σ1,

where Σ0 is the non-convex side and Σ1 is the strictly convex part of the surface,
Σ. The junction between the two sides is the (n− 1)-dimensional surface

Γ = Σ0 ∩ Σ1.

Now we assume Σ0 is a concave graph z = φ(x) over a hyper plane.
Since the equation is invariant under the rotation, we may assume the hyper

plane is z = 0 plane and that Σ1 lies above this plane. The the lower part of
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Σ can be written as the graph of a function

z = f(x)

over a compact domain Ω ⊂ Rn on which the non-convex part can be written as
a graph z = φ(x). Suppose z = f∗(x) is the convex envelope of the non-convex
surface z = f(x). We can choose the domain Ω to be the set

Ω = {x ∈ Rn : |∇f∗|(x) < ∞}

so that f∗ turns vertical at the boundary Γ . Let us denote by Tc the time
when the area of the non-convex side Σo of the surface shrinks to zero. Since
we only consider the surface symmetric with respect to z-axis, we may denote
the lower part of Σ1 by z = f(r, t) for |x| = r and the non-convex part Σ0 by
z = φ(r) for |x| = r. Note that f(r, 0) = φ(r) on Σ0. Suppose z = f∗(r, t)
be the convex envelope of the non-convex surface z = f(r, t). Then under the
Gauss curvature flow, the envelope evolves as

(1.1) ft =
det(D2f∗)

(1 + |Df∗|2)n+1
2

.

Let Ω(f) = {(x, t) : |x| = r, f(r, t) = f∗(r, t)} and Ωt(f) = {x : (x, t) ∈
Ω(f)}. The free boundary is denoted by Γ (f) = ∂Ω(f) and Γt(f) = {x :
(x, t) ∈ Γ (f)}. In particular, we denote Ωt = Ωt(f) and Γt = Γt(f).

Conditions on Ω(f) = { r : f(r, t) = f∗(r, t) }:

• max φ < max f on [0, T ]
• fr = 0 on Γ0

• 0 < δ < |(fr)n−1frr| < C on Γ0

• z = φ(r) is a linear function. In the other words, the surface {(x, z) :
z = φ(|x|), x ∈ Rn} is a cone in Rn+1.

The first condition is for avoiding singularities that could appear by the
surface on the top wearing out faster than the non-convex part vanishing. And
the second condition is imposed for finite speed of propagation which will be
explained in the following paragraph. φ can be a general concave function in
the forth condition.

To understand the local behavior, we consider a simple model near the free
boundary r = γ(t). (1.1) will be

ft =
f∗
rr

In+1

(
f∗
r

r

)n−1

,

where I = (1 + (f∗
r )

2)
1
2 . Now we want to investigate whether the speed of

propagation of the free boundary is non-degenerate and finite as it does in
the flat spot case, [11]. fr will be zero on the free boundary otherwise it will
propagate with infinite speed. Notice that on the free boundary Γ (f), we have

f∗(γ(t), t) = φ(γ(t), t).
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Then

f∗
t + f∗

r γ
′(t) = φrγ

′(t),

γ′(t) =
f∗
t

φr − f∗
r

,

and f∗
t = ft on Ω(t). These imply

(1.2) γ′(t) =
(f∗

r )
n−1f∗

rr

rn−1(φr − f∗
r )I

n+1
.

fr = 0 otherwise it will propagate with infinite speed. If limr→γ(t)+ fr(x, t) > 0,
then we have f∗

rr(γ(t), t) = ∞ which implies the speed of the propagation of
the free boundary is ∞. If we expect the speed of the free boundary to be
finite, f∗

r (γ(t), t) = limr→γ(t)+ fr(x, t) = 0.
To find the behavior of fr away from the free boundary, let us try fr ≈

(r− γ(t))α0 for some αo. From the fact that γ′(t), φr(γ(t)), and I are of order
one, it is easy to see αo = 1

n and that we expect the optimal regularity of f to

be C1, 1
n . However, if we let the pressure g(r, t) = 1

nf
n
r ≈ (r − γ(t)),

gt =
gαgrr

rn−1In+1
− (n− 1)

gαgr
rnIn+1

− (n+ 1)
g

1
n g2r

rn−1In+3
,

where α = n−1
n , I = (1+ (ng)

2
n )

1
2 and we may expect better regularity for g as

for the pressure of the porous medium equation [5]. Let us return back to the
original equation with free boundary condition

(1.3) γ′(t) =
f∗
rr

φr

(
f∗
r

r

)n−1

(r, t) ∈ Γ (f)

since I = (1 + f2
r )

(n+1)/2 = 1 on Γ (f). Since g(γ(t), t) = 0,

γ′(t) = − gt
gr

.

With (1.2), we conclude

gt = − g2r
φrrn−1

.

In this paper, we discuss the existence and regularity of the solution g satisfying

(GCFP)

gt =
1

In+1

{
gαgrr
rn−1 − (n− 1) g

αgr
rn − (n+ 1)

g
1
n g2

r

rn−1In+3

}
in Ω(g)

gt(r, t) = − g2
r

φrrn−1 on Γ (g)

and regularity of the free boundary Γt = ∂{x : g(r, t) = 0 } with finite speed

of propagation where α = n−1
n and I = (1 + (ng)

2
n )

n+1
2 .

The first result shows the short time existence and the free boundary is
smooth for short time:
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Theorem 1.1 (The Short Time Existence). If the functions g0, g0r and gα g0rr,
restricted to the compact domain Ω0, extend continuously up to the boundary
Ω0, with extensions which are Hölder continuous on Ω0 of class Cγ(Ω0), for
some γ > 0, and g0r ̸= 0 along Γ0, then there exists a number T > 0 for which
the Gauss curvature flows, (GCF), admits a solution Σ(t) whose strictly convex
side Σ0(t) is smooth up to the interface Γt, when 0 < t < T . In particular, the
free boundary Γ is a smooth surface in the space and time, when 0 < t < T .

The second theorem shows g remains smooth up to the free boundary till
the non-convex part focuses to a point at the time Tc:

Theorem 1.2 (The Long Time Existence). Under the assumption of the The-
orem 1.1, there exists a solution Σ(t) of (GCF) whose pressure-like function
g is smooth up to the free boundary Γ for all t < Tc where Tc is the focusing
time of the non-convex surface. In particular the interface Γt is smooth in t
for 0 < t < Tc.

Inspired by [5], [10], [11], the proof of Theorem 1.1 is based on the idea of
global change of coordinates by setting g(h(z, t), t) = z where {x : x = h(z, t)}
is the level set of g. This transformation enables us to change the free boundary
problem into an fixed boundary value problem{

M(h) = ht − F (t, z, zαhzz) in { 0 < z ≤ 1 } × [0, T ]

ht(z, t) = H(hz(z, t), h) on { z = 0 }.

This equation is governed by metric s where

d2s =
dx2

2xα

and
∆s h = xα hxx

which is no longer degenerating with respect to this new metric s. We employ
Schauder estimate with respect to s for the model equation [20]. To prove
the existence of solution at Section 2, we apply the inverse function theorem
between certain Banach spaces. Section 3 will be devoted to our second result,
the long time existence up to the free boundary till the non-convex part vanishes
and C∞ smoothness of the free boundary. First let us summarize the notations.

Notations:

(1) The convex surface Σ = Σ0 ∪ Σ1 where Σ0 is the non-convex side and
Σ1 is the strictly convex part of the surface, Σ.

(2) f∗ is the convex envelope of f which the supremum of all linear func-
tions below f .

(3) The domains will be defined as the followings:
Ω(t) = {x ∈ Rn : |Df∗(x, t)| < ∞},
Ω(g) = {(x, t) : x ∈ Ω(t), 0 ≤ t < T, g(x, t) > 0},
Ωt = {x ∈ Ω(t) : g(x, t) > 0},
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Ωk
t = {x ∈ Ω(t) : 0 < g(x, t) ≤ k},

Ωt × [0, T ] = ∪0≤t≤T (Ωt × {t}) = Ω(g),
Ωk

t × [0, T ] = ∪0≤t≤T (Ω
k
t × {t}),

Γ (g) = ∂{(x, t) : g(x, t) = 0}, Γt = {x : (x, t) ∈ Γ (g)} = ∂{x : g(x, t) =
0} and Γt is the graph of r = γ(t),
S0 = {x > 0} and S = S0 × [0,∞).
Notice that Ω(t) = {x : g(x, t) = 0} ∪Ωt and Ω(0) = Ω.
Q+

R = {(x, t) : 0 ≤ x ≤ R, 1−R2−α ≤ t ≤ 1}.
(4) The parabolic distance between two points P = (x1, t1) and Q =

(x2, t2) is

s[P,Q] =
|x1 − x2|
|x

α
2
1 + x

α
2
2 |

+
√
|t1 − t2|.

(5) Dxf = fx and Dxf = xαfx.
D2k

x f = (DxDx)
kf and D2k+1

x f = Dx(DxDx)
kf .

(6) The Hölder norms of f in a set A:

∥f∥C0
s (A) = supx∈A |f(x)|, ∥f∥Hγ

s (A) = supP ̸=Q∈A
|f(P )−f(Q)|

s(P,Q)γ ,

∥f∥H2+γ
s (A) = ∥xαfxx∥Hγ

s (A) + ∥ft∥Hγ
s (A) ,

∥f∥C2
s (A) = ∥f∥C0

s (A) + ∥fx∥C0
s (A) + ∥xαfxx∥C0

s (A) ++∥ft∥C0
s (A),

∥f∥C2k
s (A) =

∑
i+j≤k ∥D̄i

x,xD
j
tf∥C0

s (A),

∥f∥Hk+γ
s (A) =

∑
2i+j=k ∥Di

xD
j
t f∥Hγ

s (A), ∥f∥C2k+γ
s (A) = ∥f∥C2k

s (A) +

∥f∥H2k+γ
s (A).

(7) T0g(x, t) = g(0, 1),
T1f(x, t) = f(0, 1) + fx(0, 1)x,

T2−α,1f(x, t) = f(0, 1)+fx(0, 1)x+
1

(2−α)(1−α)x
αfxx(0, 1)x

2−α+ft(0, 1)(t−1),

Rif = f − Tif for i = 0, 1 and R2−α,1f = f − T2−α,1f .

Let us start with showing the existence of the solution for short time by
introducing a simple model equation in the following section.

2. The free boundary for the Gauss curvature flow

2.1. The result

In this part of the paper we will apply the results of Section 4, [20], to study
the regularity of the free boundary for the Gauss curvature flow

ft =
(fr)

n−1frr
rn−1(1 + f2

r )
(n+1)/2

.

In the introduction, we show the pressure

g(r, t) =
1

n
fn
r ,
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satisfies

gt =
1

In+1

{
gαgrr
rn−1

− (n− 1)
gαgr
rn

− (n+ 1)
g

1
n g2r

rn−1In+3

}

with I =
{
1 + (ng)2/n

}1/2
and α = n−1

n . And on the free boundary Γ (t), we
have g(Ωt, t) = 0.

Let Ω be a compact domain in Rn and g0 a function on Ω with g0 = 0 at
Γ and g0 > 0 in the interior of Ω. We will study the free-boundary problem,
(GCFP), for some T > 0, where Ωt is the closure of the set {r ∈ R : g(r, t) >
0}. Throughout the rest of the paper we will denote by Ωt × [0, T ] the set
Ωt × [0, T ] = ∪0≤t≤T (Ωt × {t}). Our main result is the following regularity
theorem.

Theorem 2.1. Let Ω be a compact domain in R and let g0 be a function in
the space C2+γ

s (Ω), for some 0 < γ < 1, with g0 = 0 at Γ and g0 > 0 in the
interior of Ω. Moreover, assume that

Dg0(r) ̸= 0, ∀r ∈ Ω.

Then, there exists a number T > 0, for which the free-boundary problem,
(GCFP), admits a solution g whose ∂g

∂t is C2+γ
s and ∂g

∂r is C̃2+γ
s to the free

boundary Γt × (0, T ]. In particular, the interface Γt × (0, T ] is smooth.

Theorem 1.1 in the introduction is an immediate consequence of Theorem
2.1, since Cγ(Ω) ⊂ Cγ

s (Ω) for all γ > 0. Notice that the solution of the free
boundary problem in Theorem 2.1, extended to be equal to zero on (Ω \Ωt)×
[0, T ], is the unique weak solution of the free boundary problem, (GCFP).

To motivate the proof of the regularity Theorem 2.1 we will first compute the
transformation of (GCFP), when one exchanges dependent and independent
variables near the boundary. This change of coordinates converts the free
boundary into a fixed boundary. Assume that the function g belongs to the
space C2+γ

s (Ωt × [0, T ]). Pick a point P0 = (r0, t0) at the free boundary Γt ×
(0, T ]. We can assume that gr(P0) > 0, gt(P0) = c. For a positive number δ
sufficiently small, we denote by Qδ the cube

|r − r0| ≤ δ, −δ ≤ t− t0 ≤ 0

and by Λδ, the intersection

Λδ = (Ωt × [0, T ]) ∩Qδ.

Since the first derivatives of g are Hölder continuous up to the free boundary,
there exists a number δ > 0 such that

gr(r, t) > 0, gt(r, t) > 0 ∀(r, t) ∈ Λδ.

It follows from the Implicit Function Theorem that if the number δ is sufficiently
small, we can solve the equation z = g(r, t) for (r, t) ∈ Λδ with respect to r,
yielding to a map r = h(z, t) defined for all (z, t) sufficiently close to the point
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(0, t0). Also, after a moment of thought we can see that there exists a number
η > 0 sufficiently small, so that h is defined on the cube Bη = { 0 ≤ z ≤
η, −η ≤ t− t0 ≤ 0 }.

We wish to find the differential equation satisfied by the function h in Bη.
Notice that the free boundary g = 0 has now been transformed into the fixed
boundary z = 0. Via this change of coordinates, (GCFP) transforms into the
equation

M(h) = ht − zα
1

J

hzz

hn−1h2
z

+ (n− 1)
1

J

zα

hn
= 0,

B(h) = ht −
1

φr(h)hn−1hz
= 0.

The operator M defined above is a quasi-linear operator which becomes degen-
erate when z = 0. We can easily compute its linearization DM(h) at the point
h:

DM(h)(h̃) = h̃t − zα
1

J

1

hh2
z

h̃zz +
1

J

2zαhzz

hh3
z

h̃z +
n− 1

J

{
zαhzz

hnh2
z

+
n zα

hn+1

}
h̃,

DB(h)(h̃) = h̃t +
h̃z

φr(h)hn−1h2
z

+
nh̃

φr(h)hnhz
.

Since h ∈ C2+γ
s (Bη) and on the set Bη we have hz(z, t) > 0 the linearized

operator DM(h) on Bη belongs to the class of the degenerate operators studied
in Section 3, [20].

Our goal is to use the results in Section 3, [20], for the proof of Theorem 2.1.
However, the change of coordinates presented here is only local and can’t be
used directly for the proof of Theorem 2.1. In the next section we will introduce
a more subtle, global change of coordinates which is based on similar ideas.

2.2. Partial regularity

Let Ω be a compact domain in R and g0 a function on Ω with g0 = 0 at
Γ and g0 > 0 in the interior of Ω. Assume that g0 ∈ Ck,2+γ

s (Ω) for some
nonnegative integer k and that

|Dg0(r)|+ g0(r) ≥ c > 0 ∀r ∈ Ω

for some fixed positive number c. Denote by D the unit disk D = {u ∈ R :
|u| ≤ 1 } and pick a smooth surface S, sufficiently close to the surface z = g0(r).
Let S : D → Rn be a smooth parametrization for the surface S which maps
∂D onto S ∩ { z = 0 }. Also, let

T =

(
T1

T2

)
be a smooth vector field, transverse to the surface S. Since |Dg0| ≥ c along
Γ and S is sufficiently close to the surface z = g0(r), we can choose T to be
parallel to the plane z = 0 in a small neighborhood of ∂D. In other words,
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there exists a number δ > 0 depending on k such that T2(u) = 0 on D \D1−δ

with D1−δ = {u ∈ R : |u| ≤ 1− δ }.
For η > 0 sufficiently small, we define the change of spatial coordinates

Φ : D × [−η, η] → R2 by(
r
z

)
= Φ

(
u
w

)
= S(u) + wT (u).

The map Φ defines r and z as functions of the new coordinates u and w.
Assume that z = g(r, t) satisfies the initial free-boundary problem, (GCFP),

where Ωt is the closure of the set {r ∈ R : g(r, t) > 0}. Under the coordinate
change Φ, the initial data g0(r) transforms to a function w0(u) which can be
made arbitrarily small, by choosing the smooth surface S sufficiently close to
the surface z = g0(r). We will see that w0 ∈ Ck,2+γ

s (D), since g ∈ Ck,2+γ
s (Ω).

When z evolves as a function of (r, t) then, through this coordinate change
w evolves as a function of (u, t) with u ∈ D. Notice that by our choice of
the parametrization S we have u ∈ ∂D if and only if z = 0. Hence the free-
boundary where z = g(r, t) = 0 is mapped onto the fixed lateral boundary of the
cylinder D × [0, T ].

The evolution of w is described in the following theorem:

Theorem 2.2. Let Ω be a compact domain in R, k a nonnegative integer and
let g0 be a function in the space Ck,2+γ

s (Ω) for some number γ in 0 < γ < 1.
Assume that g0 > 0 in the interior of Ω and g0 = 0 at Γ with

|Dg0(r)|+ g0(r) ≥ c ∀r ∈ Ω.

Then, under the coordinate change, (GCFP) converts into the initial value
problem 

Mw = 0 (u, t) ∈ D × [0, T ]

Bw = 0 (u, t) ∈ ∂0D × [0, T ]

w(u, 0) = w0(u) u ∈ D

with {
Mw = wt − (uα F (t, u, w,Dw)wuu +G(t, u, w,Dw))

Bw = H(t, u, w,Dw)

and w0 ∈ Ck,2+γ
s (D). Moreover, if T ≤ τk, with τk sufficiently small depending

on c and k, the operator M satisfies all the hypotheses of Theorem 4.4, [20].

Proof. We choose a sufficiently small number δ > 0, such that

T2(u) = 0 on D \D1−δ

with T =
(
T1

T2

)
denoting, as above, the transverse vector field to the surface

S. Notice that by choosing the smooth surface sufficiently close to the surface
z = g0(r), we can make δ to depend only on the constant c.

To show that w satisfies an equation of the desired form in the interior
cylinder D1−δ × [0, T ] is straight forward. Hence, we will restrict our attention
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to D \D1−δ. We start by expressing the first and second derivatives of z with
respect to r, t in terms of the first and second derivatives of w with respect to
u, t.
After some calculations, we see that z = g(r, t) evolves as

gt =
1

In+1

{
gαgrr
rn−1

− (n− 1)
gαgr
rn

− (n+ 1)
g

1
n g2r

rn−1In+3

}
and that w evolves as

∂w

∂t
=

zα

rn−1 In+1

{
∂2w

∂u2
+

ruw + 2ruw
rw

(
∂w

∂u

)2

+
ruu
rw

− zuu
ru rw zu

}
+ (n− 1)

zα

In+1 rn
.

Notice that on D \Dδ the z coordinate is independent of w (T2 = 0). In other
words z = S2, with S2 denoting the z coordinate of the parametrization S.
Therefore, since S2 maps ∂D onto z = 0, z = x(u) on D \Dδ, strictly positive
in the interior of D and such that

ϑ(u) ∼ d(u) on D \ D1−δ

with d(u) denoting the distance of the point u to the boundary of D. It is then
easy to see that the equation takes the form

wt − (uα F (t, u, w,Dw)wuu +G(t, u, w,Dw) ) = 0.

The coordinate change Φ transforms the initial data

gt = − g2r
φr rn−1

into

B(w) = wt −
zu

(ru + rw
∂w
∂u ) rwφrrn−1

= 0

in ∂0D×[0, T ] which is of the form ofH(t, u, w,Dw). The reader can verify that
if g0 ∈ Ck,2+γ

s (Ω), then w0 ∈ Ck,2+γ
s (D). Moreover, the norm ∥w0∥Ck,2+γ

s (D)

can be made arbitrarily small, by choosing the smooth surface S in sufficiently
close to the surface z = g0(r).

Since the change of variables Φ is smooth, the functions F and G will depend
smoothly on the variables (t, u, w,Dw) as long as | ru | > 0 and | rwzu | > 0 for
all u ∈ D \ Dδ. And, the operator

Mw = wt − (uα F (t, u, w,Dw)wuu +G(t, u, w,Dw) )

satisfies the hypotheses of Theorem 4.4, [20], which indicates the existence of
w since the coordinate change Φ is smooth and the function w0 belongs to the
space Ck,2+γ

s (D). □

This finishes also the proof of Theorem 2.1.

As a consequence of Theorem 2.1 and Theorem 4.4 at [20], we obtain the
following main result.
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Theorem 2.3. Let Ω be a compact domain in R and let g0 be a function in
the space Ck,2+γ

s (Ω) for some nonnegative integer k and some number γ in
0 < γ < 1. Assume that g0 = 0 at Γ , g0 > 0 in the interior of Ω so that

|Dg0(r)|+ g0(r) ≥ c > 0 ∀r ∈ Ω.

Then, there exists a number τk, for (GCFP) admits a solution g in Ck,2+γ
s (Ωt×

[0, τk]).

Proof. As we have seen in Theorem 2.1 the coordinate change Φ converts the
given initial free-boundary problem to the initial value problem with fixed
boundary 

Mw = 0 (u, t) ∈ D × [0, T ]

Bw = 0 (u, t) ∈ ∂0D × [0, T ]

w(u, 0) = w0(u) u ∈ D

with {
Mw = wt − (xα F (t, u, w,Dw)wuu +G(t, u, w,Dw))

Bw = H(t, u, w,Dw)

and w0 ∈ Ck,2+γ
s (D). However we have shown that if T ≤ τk, with τk suffi-

ciently small depending on k and c, the operator M satisfies all the hypotheses
of Theorem 2.2, [20]. Therefore, by this theorem the initial value problem for
the equation Mw = 0 admits a solution w ∈ Ck,2+γ

s (D× [0, τk]). If we express
the function w in the old coordinates we obtain a solution z = g(r, t) of the given
initial free-boundary problem which belongs to the space Ck,2+γ

s (Ω × [0, τk]).
The computations are the same as in the proof of Theorem 2.1. □

2.3. C∞-regularity

In this final section we will give the proof of Theorem 2.1. It will follow from
the next regularity result.

Theorem 2.4. Assume that for some T > 0 and some number γ in 0 < γ < 1,
g ∈ C2+γ

s (Ωt× [0, T ]) is a solution of (GCFP) so that |Dg(r, t)|+g(r, t) ≥ c >

0, ∀(r, t) ∈ Ωt× [0, T ]. Then, for any positive integer k, ∂kg
∂tk

∈ C2+γ
s (Ωt×(0, T ])

and for any τ in 0 < τ < T we have

∥∂
kg

∂tk
∥C2+γ

s (Ωt×[τ,T ]) ≤ Ck(τ, ∥g0∥C2+γ
s (Ω)).

Proof. We begin with the proof of the theorem for k = 1. Choose a family of
smooth regularization g0ϵ of the initial data g0, approximating g0, so that each
g0ϵ is strictly positive in the interior of a compact domain Ωϵ, with gϵ = 0 at Γϵ

and |Dg0ϵ (r)| + g0ϵ (r, t) ≥ c > 0, ∀r ∈ Ωϵ. It follows from the results in Section
2, that we can choose the functions g0ϵ so that

∥g0ϵ ∥C2+γ
s (Ωϵ)

≤ C ∥g0∥C2+γ
s (Ω)
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with the constant C independent of ϵ and g0ϵ → g0 as ϵ → 0 in the sense that

Dtgϵ → Dtg

if i ≤ 1 and

dαϵ D2
rgϵ → dαϵ D2

rg

with dϵ denoting the distance to the boundary of Ωϵ.
Denote by gϵ the solution to (GCFP) as constructed in Theorem 4.4. It

follows from the same theorem that there exists a number τ1 in 0 < τ1 ≤ T
which is independent of ϵ such that gϵ ∈ C1,2+γ

s (Ωϵ,t × [0, τ1]. Moreover,

∥∂gϵ
∂t

∥C2+γ
s (Ωϵ,t×[0,τ1])

≤ C(∥g0ϵ ∥C1,2+γ
s (Ωϵ)

).

On the other hand, since ∥g0ϵ ∥C2+γ
s (Ωϵ)

≤ C ∥g0∥C2+γ
s (Ω) the result in Theorem

4.4 implies that

∥gϵ∥C2+γ
s (Ωϵ,t×[0,T ]) ≤ C(∥g0∥C2+γ

s (Ω))

a bound that is independent of ϵ. Therefore, it is easy to see that passing to a
subsequence the sequence gϵ will converge to g, being the unique weak solution
of the equation

gt =
1

I

{
gαgrr
rn−1

− (n− 1)
gαgr
rn

}
with initial data gr(r, 0) = g0r .

Our first goal is to show that for τ in 0 < τ < τ1 we have

∥∂gϵ
∂t

∥C2+γ
s (Ωϵ,t×[τ,τ1])

≤ C(τ, ∥g0∥C2+γ
s (Ω))

with C = C(∥g0∥C2+γ
s (Ω)) independent of ϵ. For this purpose we will use the

local change of variables introduced in Section 2.
For ϵ > 0 and τ in 0 < τ < τ1 fixed, we pick a point P0 = r0 at the

free boundary ∂Ωϵ,t × (τ, τ1). We can assume without loss of generality that
(gϵ)r(P0) > 0, (gϵ)t(P0) = c. Then, as we showed, in Section 2, locally around
the point P0, we can solve the equation z = gϵ(r, t) with respect to r yielding
to a function r = hϵ(z, t) defined on a small box

Bη = { 0 ≤ z ≤ η, −η ≤ t− t0 ≤ 0 }.
After a moment of thought we realize that the number η can be taken to be
independent of the particular point P0 on the free boundary Ωϵ,t × [0, T ] and
independent ϵ. This is because the norms ∥gϵ∥C2+γ

s (Ωϵ×[0,T ]) are uniformly

bounded.
To simplify the notation we will denote for the moment the function hϵ by

h. We have computed in Section 1 that on the set Bη we have hz = 1
gr

and

therefore hz(z, t) > 0 if η is sufficiently small. Moreover, each hϵ satisfies the
equation

ht =
1

J
zα

hzz

hn−1 h2
z

+ (n− 1)
1

J

zα

hn
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for all (z, t) ∈ Bη. Notice that we can choose γ small enough so that J will
belong to Cγ

s .
Our goal is to establish a C1,2+γ

s bound for h = hϵ in the box Bη which is
independent of ϵ. To do so we will first compute, by differentiating the above
equation by t, the evolution of the derivatives ht on Bη. Once again the reader
may notice that J is depends only on z which has no effect when differentiating
the above equation with respect to t. Then we will apply the local Schauder
estimates. We will establish this bound for the time derivative w = ht which
satisfies the same equation, namely Mϵ,t(w) = 0, with

M(h) = ht − zα
1

J

hzz

hn−1h2
z

+ (n− 1)
1

J

zα

hn
= 0,

Mϵ,t(w) = wt −
1

J

{
zα

wzz

hh2
z

+ (n− 1) zα
(
− hzz

hnh2
z

+ n
1

hn+1

)
w

}
.

We conclude from the above that h = hϵ satisfies

∥∂hϵ

∂t
∥C1,2+γ

s ( Bη/2)
≤ C(∥h0∥C2+γ

s (Ω)).

We can now go back to the original coordinates. The transformation of first
and second derivatives via the coordinate change, as computed in Section 2,
and our estimates above show that if for some number τ in 0 < τ < τ1, A

τ
η,ϵ

denotes the set

Aτ
η,ϵ = { (r, t) ∈ Ωϵ × [τ, τ1] : gϵ(r, t) ≤ η }

then we have

∥∂gϵ
∂t

∥C2+γ
s (Aτ

η,ϵ)
≤ C(τ, ∥g0∥C2+γ

s (Ω)).

The same estimate holds true on the interior set

Γ τ
η,ϵ = (Ωϵ,t × [τ, τ1]) \Aτ

η,ϵ

as it follows from the standard regularity theory of non-degenerate parabolic
equations. Therefore we conclude that

∥∂gϵ
∂t

∥C2+γ
s (Ωϵ×[τ,τ1])

≤ C(τ, ∥g0∥C2+γ
s (Ω))

for all τ in 0 < τ < τ1, as desired. □

Next we extend each solution gϵ so that gϵ(r, t) = 0 for all r ∈ R \ Ωϵ,t,
0 ≤ t ≤ τ1 so that each gϵ becomes a weak solution of (GCFP).

The sequence of solutions {gϵ} is equicontinuous and uniformly bounded on
R× [0, τ1], since

∥gϵ∥C2+γ
s (Ωϵ×[0,τ1])

≤ C(∥g0∥C2+γ
s (Ω)).

Therefore there exists a subsequence, still denoted by gϵ which converges, as
ϵ → 0, to the given solution g (extended to be equal to zero outside Ωt× [0, τ1]).
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The convergence is uniform on compact subsets of R× [0, τ1]. In particular

dist (Γϵ,t, Γt) → 0 as ϵ → 0

uniformly on t in the interval 0 ≤ t ≤ τ1. However, when restricted on Ωt ×
[τ, τ1], for any τ in 0 < τ < τ1 the convergence is much stronger. Indeed, it
follows from the uniform bound

∥∂gϵ
∂t

∥C2+γ
s (Ωϵ×[τ,τ1])

≤ C(τ, ∥g0∥C2+γ
s (Ω))

that there exists a subsequence of {gϵ}, still denoted by gϵ, such that for any
(r, t) ∈ Ω × [τ, τ1] we have

Di
tgϵ(r, t) → D)itg(r, t)

and

(dϵ)α D2
rgϵ(r, t) → dα D2

rg(r, t),

as ϵ tends to zero, where dϵ denotes the distance to the free boundaryΩϵ×[τ, τ1].

It is now easy to check that the solution ∂g
∂t belongs to the space C2+γ

s (Ωϵ ×
(0, τ1]) and for all τ in 0 < τ < τ1 satisfies the estimate

∥∂g
∂t

∥C2+γ
s (Ωt×[τ,τ1])

≤ C(τ, ∥g0∥C2+γ
s (Ω)).

Finally, assume that Nτ1 < T ≤ (N + 1)τ1 for some nonnegative integer N .
Since

∥g∥C2+γ
s (Ωt×[0,T ]) ≤ C(∥g0∥C2+γ

s (Ω))

we can repeat the above estimate N + 1 times to finally conclude that

∥g∥C1,2+γ
s (Ωt×[τ,T ]) ≤ C(τ, ∥g0∥C2+γ

s (Ω))

for all 0 < τ < T , as desired.
This proves the theorem in the case of k = 1. The case of a general k can

be shown via induction by differentiating the local equation

ht − zα
1

J

hzz

hn−1 h2
z

+ (n− 1)
1

J

zα

hn
= 0

k times and using once more the local Schauder estimate Theorem 4.3.

We finish this section with the proof of Theorem 2.1.

Proof of Theorem 2.1. From Theorem 4.4, there exists a solution g ∈ C2+γ
s

(Ωt × [0, T ]) of the free boundary problem (GCFP) for some number T > 0.
Moreover, since Dg0 ̸= 0 at ∂Ω, we can choose the number T so that

|Dg(r, t)|+ g(r, t) ≥ c ∀(r, t) ∈ Ωt × [0, T ]

for some c > 0. But then, it follows from Theorem 5.5 that g ∈ C1,2+γ
s (Ωt ×

[0, T ]) for all positive integers. Using the fact that at the free boundary z = 0
and the coefficients of the equation of (D̄rDr)

kg ∈ C2+γ
s and Dr(D̄rDr)

kg ∈
C̃2+γ

s for all k, we conclude that the free-boundary is smooth. □
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3. Estimates for long time existence

This section is devoted to the existence up to the focusing time of the non-
convex surface. In order to obtain non-degenerate finite speed of propagation
of the free boundary till focusing time, we need to provide the lower bound and
the upper bound for gt by estimating gr as in the following two lemmas. First,

we can notice the equation (GCFP) is uniformly elliptic in Ω
(2k)
t \Ωk

t for a
large K > 0 since 0 < k < g < 2k and then g is smooth. Now we choose a large
K so that gr(r, t) > 1 if g(r, t) = k. Otherwise from the Harnack inequality, we
can find a path on which g goes to infinity while gr ≤ 1. It is a contradiction.

Lemma 3.1.

max
Ωk

t ×[0,T ]
|gr(x, t)| ≤ Cmax

Ωk
0

|g0r(x)|

in Ωk
t × [0, T ].

Proof. Set Z(T ) = maxΩk
t ×[0,T ] gr and assume that the very large maximum is

achieved at (ro, to).
First ro is not on {g = k}. When ro is an interior point of Ω(g), let us consider
the evolution of gr:

gr,t =
1

In+1

gαgrrr
rn−1

+
1

In+1

αgα−1grgrr
rn−1

− 1

In+1

(n− 1)gαgrr
rn

− 1

In+1

(n− 1)αgα−1g2r
rn

+
1

In+1

n(n− 1)gαgr
rn+1

− (n+ 3)gr
nIn+3

{
gαgrr
rn−1

− (n− 1)
gαgr
rn

}
(ng)2/n−1

− (n+ 1)
2g

1
n grgrr

rn−1I2n+4
− (n+ 1)

g
1
n−1g3r

nrn−1I2n+4

+ (n+ 1)(n− 1)
g

1
n g2r

rnI2n+4
+

2(n+ 1)(n+ 2)

n2/n

g
3
n g3r

rn−1I2n+5

≤ C(g, r)gr.

(3.1)

Then Z will satisfy Zt ≤ CZ and then Z(T ) ≤ Z(0)eCT .
Now let us consider the case when ro is on the free boundary Γ . Then

0 ≥ 2gαgrr

rn−1
o

= gt = − g2r
φrrn−1

> 0

which is a contradiction. Therefore the maximum will achieved at t = 0. □

Lemma 3.2.

min
Ωk

t ×[0,T ]
gr ≥ δrn−1 min

Ωk
0

|g0r(x)| > 0.

in Ωk
t × [0, T ].
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Proof. Let us consider

Z = min
Ωk

t ×[0,T ]
e−Cg1−α gr

rn−1

and assume that the very small minimum is achieved at (ro, to).
Now we are going to show that Z > δ1(r) that is equivalent to the gr > δ(r).
First ro is not on {g = k}. When ro is an interior point of Ω(g), we have

Zr = e−Cg1−α

(
grr
rn−1

− (n− 1)gr
rn

− Cg−αg2r
rn−1

)
= 0

and

0 ≤ gαZrr

rn−1In+1
− Zt

= −C(1− α)e−Cg1−α

g−αr1−2ng2t ((n− 1)gα + C(1− α)rgr − Cg3r) < 0.

Therefore ro can not be an interior point of Ω(g). On the boundary, gt =

− g2
r

φrrn−1 so

0 ≤ gαZr = e−Cg1−α

(
gαgrr
rn−1

− gα
(n− 1)gr

rn
− Cg2r

rn−1

)
= −e−Cg1−α

(
C − 1

φr

)
g2r

rn−1
< 0

for C > 1
φr

. Therefore the minimum will achieved at t = 0. □

By Lemma 3.1 and Lemma 3.2, the following estimate of gt guarantees finite
speed of propagation of the free boundary.

Lemma 3.3.

gt < C|g0(x)|C2
s (Ω

k
0 )
.

Proof. Set Z(T ) = maxΩk
t ×[0,T ]

(
gt
gr

+ εt
)
and assume that the very large max-

imum is achieved at (ro, to). Then we may assume gαgrr > 1
2Z = 1

2gt at (ro, to).
If to > 0, then it will be an interior point since

0 ≤ gt = − g2r
φrrn−1

< C

on the boundary and g is smooth on {g = k}. First gt satisfies

gtt =
1

In+1

{
gαgt,rr
rn−1

+
αgrrg

α−1gt
rn−1

−(n− 1)
gαgt,r
rn

− α(n− 1)
gα−1gtgr

rn

}
− (n+ 3)gt

nIn+3

{
gαgrr
rn−1

− (n− 1)
gαgr
rn

}
(ng)2/n−1(3.2)
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− (n+ 1)
2g

1
n grgtr

rn−1I2n+4
− (n+ 1)

g
1
n−1g2rgt

nrn−1I2n+4

+
2(n+ 1)(n+ 2)

n2/n

g
3
n g2rgt

rn−1I2n+5
.

At the interior point (ro, to), we have

Zrr =

(
gt
gr

)
rr

≥ 0, Zr =

(
gt
gr

)
r

= 0.

Then (3.1) and (3.2) gives us the following contradiction at (ro, to):

0 ≥ Zt =

(
gt
gr

)
t

− ε

=
grgtt − gtgrt

g2r

=
gα

rn−1In+1

(
gt
gr

)
rr

+
2gαgrr

rn−1In+1gr

(
gt
gr

)
r

− (n− 1)
gα

rnIn+1

(
gt
gr

)
r

− (n+ 1)
2g

1
n gr

rn−1I2n+4

(
gt
gr

)
r

+ ε

≥ + ε > 0.

Therefore the large maximum will be achieved at the initial time. □

On the other hand, the next lemma guarantees non-degenerate speed at the
free boundary up to the focusing time.

Lemma 3.4.

min
Ωk

t ×[0,T ]
grr(x, t) ≥ −C(max

Ωk
0

|g0rr(x)|+ C1(K))

in Ωk
t × [0, T ].

Proof. Set Z(T ) = minΩk
t ×[0,T ] grr and assume that the very large negative

minimum is achieved at (ro, to). If (ro, to) is an interior point, we have a
contradiction since, at (ro, to),

0 ≥ grr, t

=
1

In+1

gαgrrrr
rn−1

+ 2

(
1

In+1

gα

rn−1

)
r

grrr

+ (1 + (ng)2/n)1−
n+5
2 r1−n (α gα−1 + C1 g

α−1+ 2
n )g2rr

− 1

n2
g−2+α(1 + (ng)2/n)

1
2 (−5−n)r−1−n

(
n2(1− α)αr2g2r + C2g

2
n

)
grr

+ g−2+α(1 + (ng)2/n)−
1
2 (5+n)(n− 1)α(1− α) r−ng3r

+ C3g
−2+α+2/n + C4g

1/n−2 > 0
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for some C3, C4 ≥ 0. On ∂{g > 0},

lim
r→γ(to)

gαgrr = − g2r
φrr

n−1
0

> 0.

Hence the negavitive infimum of grr doesn’t happens on ∂{g > 0}. And since g
is smooth on {g = k}, there is uniform lower bound of grr depending on K. □
Lemma 3.5. There exist 0 < δ < co < A < ∞ such that

0 < δ(T ) ≤ (t+ c0)
gt(x, t)

gr
+Ag(x, t)

for (x, t) ∈ Ωk
t × [0, T ].

Proof. There is A > 0 such that gt(x, t) + AK > 1 > 0. Set Z(T ) =

minΩk
t ×[0,T ]((t + c0)

gt(x,t)
gr

+ Ag(x, t)) = δ and assume that the very small

positive minimum, δ, is achieved at (ro, to). On the boundary,

0 < δ ≤ − gr
φrrn−1

=
gt
gr

for a small δ > 0. ro is not on {g = k} from the choice of A. When (ro, to) is
an interior point, we have, at (ro, to),

Zrr =

(
gt
gr

)
rr

+Agrr ≥ 0, Zr =

(
gt
gr

)
r

+Agr = 0

and the following contradiction:

0 ≥ Zt =
grgtt − gtgrt

g2r

=
gα

rn−1In+1
Zrr +

2gαgrr
rn−1In+1gr

Zr

− (n− 1)
gα

rnIn+1
Zr − (n+ 1)

2g
1
n gr

rn−1I2n+4
Zr

+ (n+ 1)
Ag

1
n g2r

rn−1I2n+4
> 0. □

Lemma 3.6.
0 < δ ≤ gαgrr ≤ C

in a uniform neighborhood of Γ (g).

Proof of Theorem 1.2. Let Sk
t = {(x, y, f(x, y, t)) ∈ Σ(t)|(x, y) ∈ Ωk

t } be the
graph of f on Ωk(t) and Σk = Σ\Sk. Set hij a second fundamental form of Σ
at P and (h−1)ij the inverse of hij .

The Gauss curvature K in the Σk/2 satisfies
∂

∂t
K = K(h−1)ij∇i∇jK +K2H,

[1], and then a minimum principle which means that the minimum of K hap-
pens either on initial surface Σk/2(0) or the boundary ∂Σk/2(t) for t ∈ [0, Tc].
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On the other hand, K =
fn−1
r frr
rn−1In = gr

rn−1In is bounded above and below on

∂Σk/2. Therefore K will be bounded below by a uniform constant δ0.
The Harnack estimate from [4] says that if z ∈ Sn−1 and P (z, t) ∈ Σ is the

point with −N(P (z, t)) = z for each t, then

d

dt
(t2/3K(p(z, t), t) ≥ 0

which implies that there is 0 < δ0 such that K(P ) > δ0 for a point in the
strictly convex part Σk. From the same argument as Proposition 7 in [1], the
Gauss curvature will be bounded in [0, Tc]. Since the mean curvature H is also
bounded on ∂Σk/2(t) for t ∈ [0, Tc], H will be also bounded in Σk/2(t). Now
the principle curvatures, λ1, . . . , λn, will be uniformly bounded, the diffusion
coefficient of the linearized equation will be uniformly elliptic, i.e., there is
Λ > 0 such that

1

Λ
< λi < Λ for i = 1, . . . , n

and
1

Λ
|ξ|2 < K(h−1)ijξiξj < Λ|ξ|2.

Then the regularity theory for uniformly elliptic and parabolic theory, [19],
Σkwill be smooth.

With the smoothness of Σk, lemmas in this section, and Theorem 2.2 and
Theorems 4.3, 4.4 at [20], the function g will be smooth up to the free boundary
for all time 0 < t < Tc, with the focusing time Tc of the non-convex surface.
And the free boundary will be smooth. □
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