• Title/Summary/Keyword: Composite anisotropic film

Search Result 12, Processing Time 0.025 seconds

Analysis of Effective Optic Axis and Equivalent Retardation of Composite Optically Anisotropic Film by Using Transmission Ellipsometry (투과형 타원법을 이용한 중첩된 광학이방성 막의 유효 광축 및 등가 리타데이션 해석)

  • Ryu, Jang-Wi;Kim, Sang-Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.288-293
    • /
    • 2009
  • Polarization characteristics of a composite film composed of two optically anisotropic films are analyzed. The procedure to determine the effective optics axis and the equivalent retardation of the composite film is suggested in conjuction with the related ellipsometric expressions. The explicit expressions of the effective optic axis and the equivalent retardation of a non-uniform anisotropic film are derived when all optic axes are parallel. Those expressions of the composite film where optic axes of two constituting anisotropic films are not parallel are also derived. Dependence of those expressions on the polarization state of the incident light or the azimuth angle of the linearly polarized light and their limit when applied to practical use are discussed.

Failure Mechanism of Cu/PET Flexible Composite Film with Anisotropic Interface Nanostructure

  • Park, Sang Jin;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.105-110
    • /
    • 2020
  • Cu/PET composite films are widely used in a variety of wearable electronics. Lifetime of the electronics is determined by adhesion between the Cu film and the PET substrate. The formation of an anisotropic nanostructure on the PET surface by surface modification can enhance Cu/PET interfacial adhesion. The shape and size of the anisotropic nanostructures of the PET surface can be controlled by varying the surface modification conditions. In this work, the effect of Cu/PET interface nanostructures on the failure mechanism of a Cu/PET flexible composite film is studied. From observation of the morphologies of the anisotropic nanostructures on plasma-treated PET surfaces, and cross-sections and surfaces of the fractured specimens, the Cu/PET interface area and nanostructure width are analyzed and the failure mechanism of the Cu/PET film is investigated. It is found that the failure mechanism of the Cu/PET flexible composite film depends on the shape and size of the plasmatreated PET surface nanostructures. Cu/PET interface nanostructures with maximal peel strength exhibit multiple craze-crack propagation behavior, while smaller or larger interface nanostructures exhibit single-path craze-crack propagation behavior.

Polarization Analysis of Composite Optical Films for Viewing Angle Improvement of Liquid Crystal Display (액정 디스플레이 시야각 향상을 위한 복합판의 편광특성 분석)

  • Ryu, Jang-Wi;Kim, Sang-Youl;Kim, Yong-Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.4
    • /
    • pp.241-248
    • /
    • 2009
  • We suggest a new method to determine the off-alignment error of the composite film, together with in-plane($R_{in}$) and out-of-plane retardation($R_{th}$) of the compensation film, simultaneously. The composite film consists of a polarizing film and a compensation film for improvement of viewing angle of a liquid crystal display. We regarded the compensation film as o-plate with its optic axis along an arbitrary direction. By using an extended Jones matrix method, the polarization characteristics of the composite film are examined. The calculated Fourier constants, ($\alpha$, $\beta$) curves of the composite film as the azimuth angle is varied at the incident angles of $0^{\circ}$ and $50^{\circ}$, respectively, are used to determine the axis misalignment, the tilt angle and the azimuth angle of the compensation film by adopting the linear regressional analysis technique. Since this method can be applied for the inspection of the composite film even after laminating the polarizing film and the compensation film, it will be useful for simplifying the manufacturing process and reducing the production cost of liquid crystal display panels.

Study on the Epoxy/BaTiO$_3$Embedded Capacitor Films for PWB Applications (인쇄회로기판 용 Epoxy/BaTiO$_3$내장형 커패시터 필름에 관한 연구)

  • 조성동;이주연;백경욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.59-65
    • /
    • 2001
  • Epoxy/$BaTiO_3$composite capacitor films with excellent stability at room temperature, uniform thickness, and electrical properties over a large area ware successfully fabricated. The composite capacitor films with good film formation capability and easy process ability were made from epoxy resin developed for ACF as a matrix and two kinds of $BaTiO_3$powders as fillers to increase the dielectric constant of the composite film. The crystal structure of the powders and its effects on dielectric constant of the films were investigated by X-ray diffraction (XRD). And the optimum amount of dispersant, phosphate ester, was determined by viscosity measurement of suspension. DSC and dielectric property tests were conducted to decide the right curing temperature and the optimum amount of the curing agent. As a result, the capacitors of 7 $\mu \textrm{m}$ thick film with 10 nF/$\textrm{cm}^2$ and low leakage current were successfully demonstrated.

  • PDF

Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate (유리섬유가 강화된 필름 삽입 사출품의 섬유배향 및 휨)

  • Kim, Seong-Yun;Kim, Hyung-Min;Lee, Doo-Jin;Youn, Jae-Ryoun;Lee, Sung-Hee
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.117-125
    • /
    • 2012
  • Warpage of the film insert molded (FIM) part is caused by an asymmetric residual stress distribution. Asymmetric residual stress and temperature distribution is generated by the retarded heat transfer in the perpendicular direction to the attached film surface. Since warpage was not prevented by controlling injection molding conditions, glass fiber (GF) filled composites were employed as substrates for film insert molding to minimize the warpage. Distribution of short GFs was evaluated by using micro-CT equipment. Proper models for micro mechanics, anisotropic thermal expansion coefficients, and closure approximation should be selected in order to calculate fiber orientation tensor and warpage of the FIM part with the composite substrate. After six kinds of micro mechanics models, three models of the thermal expansion coefficient and five models of the closure approximation had been considered, the Mori-Tanaka model, the Rosen and Hashin model, and the third orthotropic closure approximation were selected in this study. The numerically predicted results on fiber orientation tensor and warpage were in good agreement with experimental results and effects of GF reinforcement on warpage of the FIM composite specimen were identified by the numerical results.

Imprinting of Liquid Crystal Alignment on Polymer Layers

  • Wook, Jung-Jong;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.611-614
    • /
    • 2003
  • We have investigated electric field effect on the formation of phase separated composite organic film structure which is utilized by anisotropic phase separation from LC and prepolymer mixtures. Application of bias field resulted in a significant change in liquid crystal alignment between glass substrate and polymer layer. The liquid crystal molecules segregated into the inter-electrodes and formed twisted structure which is the result of imprinting of LC alignment by the bias field on polymer layers during polymerization process.

  • PDF

Powder Packing Behavior and Constrained Sintering in Powder Processing of Solid Oxide Fuel Cells (SOFCs)

  • Lee, Hae-Weon;Ji, Ho-Il;Lee, Jong-Ho;Kim, Byung-Kook;Yoon, Kyung Joong;Son, Ji-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.130-145
    • /
    • 2019
  • Widespread commercialization of solid oxide fuel cells (SOFCs) is expected to be realized in various application fields with the advent of cost-effective fabrication of cells and stacks in high volumes. Cost-reduction efforts have focused on production yield, power density, operation temperature, and continuous manufacturing. In this article, we examine several issues associated with processing for SOFCs from the standpoint of the bimodal packing model, considering the external constraints imposed by rigid substrates. Optimum compositions of composite cathode materials with high volume fractions of the second phase (particles dispersed in matrix) have been analyzed using the bimodal packing model. Constrained sintering of thin electrolyte layers is also discussed in terms of bimodal packing, with emphasis on the clustering of dispersed particles during anisotropic shrinkage. Finally, the structural transition of dispersed particle clusters during constrained sintering has been correlated with the structural stability of thin-film electrolyte layers deposited on porous solid substrates.

Polyvilylidenefluoride-based Nanocomposite Films Induced-by Exfoliated Boron Nitride Nanosheets with Controlled Orientation

  • Cho, Hong-Baek;Nakayama, Tadachika;Jeong, DaeYong;Tanaka, Satoshi;Suematsu, Hisayuki;Niihara, Koichi;Choa, Yong-Ho
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.270-276
    • /
    • 2015
  • Polyvinylidene fluoride (PVDF)-based nanocomposites are fabricated by incorporation of boron nitride (BN) nanosheets with anisotropic orientation for a potential high thermal conducting ferroelectric materials. The PVDF is dissolved in dimethylformamide (DMF) and homogeneously mixed with exfoliated BN nanosheets, which is then cast into a polyimide film under application of high magnetic fields (0.45~10 T), where the direction of the filler alignment was controlled. The BN nanosheets are exfoliated by a mixed way of solvothermal method and ultrasonication prior to incorporation into the PVDF-based polymer suspension. X-ray diffraction, scanning electron microscope and thermal diffusivity are measured for the characterization of the polymer nanocomposites. Analysis shows that BN nanosheets are exfoliated into the fewer layers, whose basal planes are oriented either perpendicular or parallel to the composite surfaces without necessitating the surface modification induced by high magnetic fields. Moreover, the nanocomposites show a dramatic thermal diffusivity enhancement of 1056% by BN nanosheets with perpendicular orientation in comparison with the pristine PVDF at 10 vol % of BN, which relies on the degree of filler orientation. The mechanism for the magnetic field-induced orientation of BN and enhancement of thermal property of PVDF-based composites by the BN assembly are elucidated.