Browse > Article
http://dx.doi.org/10.7234/composres.2015.28.5.270

Polyvilylidenefluoride-based Nanocomposite Films Induced-by Exfoliated Boron Nitride Nanosheets with Controlled Orientation  

Cho, Hong-Baek (Department of Materials Science & Chemical Engineering, Hanyang University)
Nakayama, Tadachika (Extreme Energy-Density Research Institute, Nagaoka University of Technology)
Jeong, DaeYong (Department of Materials Science & Engineering, Inha University)
Tanaka, Satoshi (Extreme Energy-Density Research Institute, Nagaoka University of Technology)
Suematsu, Hisayuki (Extreme Energy-Density Research Institute, Nagaoka University of Technology)
Niihara, Koichi (Extreme Energy-Density Research Institute, Nagaoka University of Technology)
Choa, Yong-Ho (Department of Materials Science & Chemical Engineering, Hanyang University)
Publication Information
Composites Research / v.28, no.5, 2015 , pp. 270-276 More about this Journal
Abstract
Polyvinylidene fluoride (PVDF)-based nanocomposites are fabricated by incorporation of boron nitride (BN) nanosheets with anisotropic orientation for a potential high thermal conducting ferroelectric materials. The PVDF is dissolved in dimethylformamide (DMF) and homogeneously mixed with exfoliated BN nanosheets, which is then cast into a polyimide film under application of high magnetic fields (0.45~10 T), where the direction of the filler alignment was controlled. The BN nanosheets are exfoliated by a mixed way of solvothermal method and ultrasonication prior to incorporation into the PVDF-based polymer suspension. X-ray diffraction, scanning electron microscope and thermal diffusivity are measured for the characterization of the polymer nanocomposites. Analysis shows that BN nanosheets are exfoliated into the fewer layers, whose basal planes are oriented either perpendicular or parallel to the composite surfaces without necessitating the surface modification induced by high magnetic fields. Moreover, the nanocomposites show a dramatic thermal diffusivity enhancement of 1056% by BN nanosheets with perpendicular orientation in comparison with the pristine PVDF at 10 vol % of BN, which relies on the degree of filler orientation. The mechanism for the magnetic field-induced orientation of BN and enhancement of thermal property of PVDF-based composites by the BN assembly are elucidated.
Keywords
Polyvinylidene fluoride; Boron nitride nanosheets; Anisotropic orientation; Thermal diffusivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Losego, M.D., Grady, M.E., Sottos, N.R., Cahill, D.G., and Braun, P.V., "Effects of Chemical Bonding on Heat Transport Across Interfaces," Nat. Mater., Vol. 11, No. 6, 2012, pp. 502-506.   DOI   ScienceOn
2 Luo, T. and Lloyd, J.R., "Enhancement of Thermal Energy Transport Across Graphene/Graphite and Polymer Interfaces: A Molecular Dynamics Study," Adv. Func. Mater., Vol. 22, No. 12, 2012, pp. 2495-2502.   DOI   ScienceOn
3 Huang, X. and Jiang, P., "Core-Shell Structured High-k Polymer Nanocomposites for Energy Storage and Dielectric Applications," Adv. Mater., Vol. 27, No. 3, 2015, pp. 546-554.   DOI   ScienceOn
4 Li, J., Claude, J., Norena-Franco, L.E., Seok, S.I., and Wang, Q., "Electrical Energy Storage in Ferroelectric Polymer Nanocomposites Containing Surface-Functionalized $BaTiO_3$ Nanoparticles," Chem. Mater., Vol. 20, No. 20, 2008, pp. 6304-6306.   DOI   ScienceOn
5 Pikul, J.H., Gang Zhang, H., Cho, J., Braun, P.V., and King, W.P., "High-power Lithium Ion Microbatteries from Interdigitated Three-dimensional Bicontinuous Nanoporous Electrodes," Nat. Commun., Vol. 4, 2013, pp. 1732.   DOI   ScienceOn
6 Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., and Liu, J., "Electrochemical Energy Storage for Green Grid," Chem. Rev., Vol. 111, No. 5, 2011, pp. 3577-3613.   DOI   ScienceOn
7 Rabuffi, M. and Picci, G., "Status quo and Future Prospects for Metallized Polypropylene Energy Storage Capacitors," IEEE T. Plasma Sci., Vol. 30, No. 5, 2002, pp. 1939-1942.   DOI   ScienceOn
8 Li, Q., Han, K., Gadinski, M.R., Zhang, G., and Wang, Q., "High Energy and Power Density Capacitors from Solution- Processed Ternary Ferroelectric Polymer Nanocomposites," Adv. Mater., Vol. 26, No. 36, 2014, pp. 6244-6249.   DOI   ScienceOn
9 Jiang, J., Li, Y., Liu, J., Huang, X., Yuan, C., and Lou, X.W., "Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage," Adv. Mater., Vol. 24, No. 38, 2012, pp. 5166-5180.   DOI   ScienceOn
10 Huang, C.W., Wu, C.A., Hou, S.S., Kuo, P.L., Hsieh, C.T., and Teng, H., "Gel Electrolyte Derived from Poly(ethylene glycol) Blending Poly(acrylonitrile) Applicable to Roll-to-roll Assembly of Electric Double Layer Capacitors," Adv. Funct. Mater., Vol. 22, No. 22, 2012, pp. 4677-4685.   DOI   ScienceOn
11 Song, H.K. and Palmore, G.T.R., "Redox-active Polypyrrole: Toward Polymer-based Batteries," Adv. Mater., Vol. 18, No. 13, 2006, pp. 1764-1768.   DOI   ScienceOn
12 Wang, K., Zhao, P., Zhou, X., Wu, H., and Wei, Z., "Flexible Supercapacitors Based on Cloth-supported Electrodes of Conducting Polymer Nanowire Array/SWCNT Composites," J. Mater. Chem., Vol. 21, No. 41, 2011, pp. 16373-16378.   DOI   ScienceOn
13 Lee, H., Kim, J.R., Lanagan, M.J., Trolier-Mckinstry, S., and Randall, C.A., "High-Energy Density Dielectrics and Capacitors for Elevated Temperatures: $Ca(Zr,Ti)O_3$," J. Am. Ceram. Soc., Vol. 96, No. 4, 2013, pp. 1209-1213.   DOI   ScienceOn
14 Zhou, Z., Carr, J., Mackey, M., Yin, K., Schuele, D., Zhu, L., and Baer, E., "Interphase/interface Modification on the Dielectric Properties of Polycarbonate/poly(vinylidene fluoride-co-hexafluoropropylene) Multilayer Films for High-energy Density Capacitors," J. Poly. Sci., Part B: Polym. Phys., Vol. 51, No. 12, 2013, pp. 978-991.   DOI
15 Kang, B.S., Choi, S.K., and Park, C.H., "Diffuse Dielectric Anomaly in Perovskite-type Ferroelectric Oxides in the Temperature Range of $400-700^{\circ}C$," J. Appl. Phy., Vol. 94, No. 3, 2003, pp. 1904-1911.   DOI   ScienceOn
16 Gui, Z., Zhu, H., Gillette, E., Han, X., Rubloff, G.W., Hu, L., and Lee, S.B., "Natural Cellulose Fiber as Substrate for Supercapacitor," ACS Nano, Vol. 7, No. 7, 2013, pp. 6037-6046.   DOI   ScienceOn
17 Kahouli, A., Gallot-Lavallee, O., Rain, P., Lesaint, O., Guillermin, C., and Lupin, J.M., "Dielectric Features of Two Grades of Bi-oriented Isotactic Polypropylene," J. Appl. Polym. Sci., Vol. 132, No. 28, 2015.
18 Karabelli, D., Lepretre, J.C., Dumas, L., Rouif, S., Portinha, D., Fleury, E., and Sanchez, J.Y., "Crosslinking of Poly(vinylene fluoride) Separators by Gamma-irradiation for Electrochemical High Power Charge Applications," Electrochim. Acta, Vol. 169, 2015, pp. 32-36.   DOI   ScienceOn
19 Cohen, R.E., "Origin of Ferroelectricity in Perovskite Oxides," Nature, Vol. 358, No. 6382, 1992, pp. 136-138.   DOI
20 Chou, C.-C., Hou, C.-S., Chang, G.-C., and Cheng, H.-F., "Pulsed Laser Deposition of Ferroelectric $Pb_{0.6}Sr_{0.4}TiO_3$ Thin Films on Perovskite Substrates," Appl. Surf. Sci., Vol. 142, No. 1- 4, 1999, pp. 413-417.   DOI   ScienceOn
21 Han, K., Li, Q., Chanthad, C., Gadinski, M.R., Zhang, G., and Wang, Q., "A Hybrid Material Approach Toward Solution-Processable Dielectrics Exhibiting Enhanced Breakdown Strength and High Energy Density," Adv. Funct. Mater., Vol. 25, No. 23, 2015, pp. 3505-3513.   DOI   ScienceOn
22 Han, K., Li, Q., Chen, Z., Gadinski, M.R., Dong, L., Xiong, C., and Wang, Q., "Suppression of Energy Dissipation and Enhancement of Breakdown Strength in Ferroelectric Polymergraphene Percolative Composites," J. Mater. Chem. C, Vol. 1, No. 42, 2013, pp. 7034-7042.   DOI
23 Balandin, A.A., "Thermal Properties of Graphene and Nanostructured Carbon Materials," Nat. Mater., Vol. 10, 2011, pp. 569-580.   DOI   ScienceOn
24 Dean, C.R., Young, A.F., Merici, Leec, Wangl, Sorgenfreis, Watanabek, Taniguchit, Kimp, Shepard, K.L., and Honej, "Boron Nitride Substrates for High-quality Graphene Electronics," Nat. Nano, Vol. 5, No. 10, 2010, pp. 722-726.   DOI
25 Jinhong, Y., Xingyi, H., Chao, W., and Pingkai, J., "Permittivity, Thermal Conductivity and Thermal Stability of Poly(vinylidene fluoride)/graphene Nanocomposites," IEEE Trans. Dielectr. Electr. Insul., Vol. 18, No. 2, 2011, pp. 478-484.   DOI   ScienceOn
26 Pietralla, M., "High Thermal Conductivity of Polymers: Possibility or Dream?," J. Comput-Aided. Mater., Vol. 3, 1996, pp. 273-280.   DOI
27 Rumyantsev, S.L., Levinshtein, M.E., Jackson, A.D., Mohammmad, S.N., Harris, G.L., Spencer, M.G., and Shur, M.S., Properties of Advanced Semiconductor Materials, pp. 67, New York: Wiley, 2001.
28 Cho, H.-B., Shoji, M., Fujihara, T., Nakayama, T., Suematsu, H., Suzuki, T., and Niihara, K., "Anisotropic Alignment of Nonmodified BN Nanosheets in Polysiloxane Matrix under Nano Pulse Width Electricity," J. Ceram. Soc. Jpn., Vol. 118, No. 1373, 2010, pp. 66-69.   DOI   ScienceOn
29 Wang, Y., Shi, Z., and Yin, J., "Boron Nitride Nanosheets: Largescale Exfoliation in Methanesulfonic Acid and Their Composites with Polybenzimidazole," J. Mater. Chem., Vol. 21, No. 30, 2011, pp. 11371-11377.   DOI   ScienceOn
30 Zhi, C., Bando, Y., Tang, C., Kuwahara, H., and Golberg, D., "Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties," Adv. Mater., Vol. 21, No. 28, 2009, pp. 2889-2893.   DOI   ScienceOn
31 Yorifuji, D., and Ando, S., "Enhanced Thermal Diffusivity by Vertical Double Percolation Structures in Polyimid Blend Films Containing Silver Nanoparticles," Macromol. Chem. Phys., Vol. 211, No. 19, 2010, pp. 2118-2114.   DOI   ScienceOn
32 Lin, Y., Williams, T.V., Xu, T.-B., Cao, W., Elsayed-Ali, H.E., and Connell, J.W., "Aqueous Dispersions of Few-Layered and Monolayered Hexagonal Boron Nitride Nanosheets from Sonication- Assisted Hydrolysis: Critical Role of Water," J. Phys. Chem. C, Vol. 115, No. 6, 2011, pp. 2679-2685.   DOI
33 Song, X., Gao, J., Nie, Y., Gao, T., Sun, J., Ma, D., Li, Q., Chen, Y., Jin, C., Bachmatiuk, A., Rummeli, M., Ding, F., Zhang, Y., and Liu, Z., "Chemical Vapor Deposition Growth of Largescale Hexagonal Boron Nitride with Controllable Orientation," Nano Res., 2015, pp. 1-13.
34 Cho, H.-B., Tokoi, Y., Tanaka, S., Suematsu, H., Suzuki, T., Jiang, W., Niihara, K., and Nakayama, T., "Modification of BN Nanosheets and Their Conducting Properties in Nanocomposite Film with Polysiloxane According to the Orientation of BN," Compos. Sci. Technol., Vol. 71, 2011, pp. 1046-1052.   DOI   ScienceOn
35 Fujihara, T., Cho, H.-B., Nakayama, T., Suzuki, T., Jiang, W., Suematsu, H., Kim, H.-D., and Niihara, K., "Field-induced Orientation of Hexagonal Boron Nitride Nanosheets Using Microscopic Mold for Thermal Interface Materials," J. Am. Ceram. Soc., Vol. 95, No. 1, 2012, pp. 369-373.   DOI   ScienceOn
36 Cho, H.-B., Tokoi, Y., Nakayama, T., Tanaka, S., Jiang, W., Suematsu, H., and Niihara, K., "Facile Orientation of Unmodified BN Nanosheets in Polysiloxane/BN Composite Films Using a High Magnetic Field," J. Mater. Sci., Vol. 46, No. 7, 2011, pp. 2318-2323.   DOI