DOI QR코드

DOI QR Code

Polyvilylidenefluoride-based Nanocomposite Films Induced-by Exfoliated Boron Nitride Nanosheets with Controlled Orientation

  • Cho, Hong-Baek (Department of Materials Science & Chemical Engineering, Hanyang University) ;
  • Nakayama, Tadachika (Extreme Energy-Density Research Institute, Nagaoka University of Technology) ;
  • Jeong, DaeYong (Department of Materials Science & Engineering, Inha University) ;
  • Tanaka, Satoshi (Extreme Energy-Density Research Institute, Nagaoka University of Technology) ;
  • Suematsu, Hisayuki (Extreme Energy-Density Research Institute, Nagaoka University of Technology) ;
  • Niihara, Koichi (Extreme Energy-Density Research Institute, Nagaoka University of Technology) ;
  • Choa, Yong-Ho (Department of Materials Science & Chemical Engineering, Hanyang University)
  • Received : 2015.09.24
  • Accepted : 2015.10.27
  • Published : 2015.10.31

Abstract

Polyvinylidene fluoride (PVDF)-based nanocomposites are fabricated by incorporation of boron nitride (BN) nanosheets with anisotropic orientation for a potential high thermal conducting ferroelectric materials. The PVDF is dissolved in dimethylformamide (DMF) and homogeneously mixed with exfoliated BN nanosheets, which is then cast into a polyimide film under application of high magnetic fields (0.45~10 T), where the direction of the filler alignment was controlled. The BN nanosheets are exfoliated by a mixed way of solvothermal method and ultrasonication prior to incorporation into the PVDF-based polymer suspension. X-ray diffraction, scanning electron microscope and thermal diffusivity are measured for the characterization of the polymer nanocomposites. Analysis shows that BN nanosheets are exfoliated into the fewer layers, whose basal planes are oriented either perpendicular or parallel to the composite surfaces without necessitating the surface modification induced by high magnetic fields. Moreover, the nanocomposites show a dramatic thermal diffusivity enhancement of 1056% by BN nanosheets with perpendicular orientation in comparison with the pristine PVDF at 10 vol % of BN, which relies on the degree of filler orientation. The mechanism for the magnetic field-induced orientation of BN and enhancement of thermal property of PVDF-based composites by the BN assembly are elucidated.

Keywords

References

  1. Losego, M.D., Grady, M.E., Sottos, N.R., Cahill, D.G., and Braun, P.V., "Effects of Chemical Bonding on Heat Transport Across Interfaces," Nat. Mater., Vol. 11, No. 6, 2012, pp. 502-506. https://doi.org/10.1038/nmat3303
  2. Luo, T. and Lloyd, J.R., "Enhancement of Thermal Energy Transport Across Graphene/Graphite and Polymer Interfaces: A Molecular Dynamics Study," Adv. Func. Mater., Vol. 22, No. 12, 2012, pp. 2495-2502. https://doi.org/10.1002/adfm.201103048
  3. Huang, X. and Jiang, P., "Core-Shell Structured High-k Polymer Nanocomposites for Energy Storage and Dielectric Applications," Adv. Mater., Vol. 27, No. 3, 2015, pp. 546-554. https://doi.org/10.1002/adma.201401310
  4. Li, J., Claude, J., Norena-Franco, L.E., Seok, S.I., and Wang, Q., "Electrical Energy Storage in Ferroelectric Polymer Nanocomposites Containing Surface-Functionalized $BaTiO_3$ Nanoparticles," Chem. Mater., Vol. 20, No. 20, 2008, pp. 6304-6306. https://doi.org/10.1021/cm8021648
  5. Pikul, J.H., Gang Zhang, H., Cho, J., Braun, P.V., and King, W.P., "High-power Lithium Ion Microbatteries from Interdigitated Three-dimensional Bicontinuous Nanoporous Electrodes," Nat. Commun., Vol. 4, 2013, pp. 1732. https://doi.org/10.1038/ncomms2747
  6. Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., and Liu, J., "Electrochemical Energy Storage for Green Grid," Chem. Rev., Vol. 111, No. 5, 2011, pp. 3577-3613. https://doi.org/10.1021/cr100290v
  7. Rabuffi, M. and Picci, G., "Status quo and Future Prospects for Metallized Polypropylene Energy Storage Capacitors," IEEE T. Plasma Sci., Vol. 30, No. 5, 2002, pp. 1939-1942. https://doi.org/10.1109/TPS.2002.805318
  8. Li, Q., Han, K., Gadinski, M.R., Zhang, G., and Wang, Q., "High Energy and Power Density Capacitors from Solution- Processed Ternary Ferroelectric Polymer Nanocomposites," Adv. Mater., Vol. 26, No. 36, 2014, pp. 6244-6249. https://doi.org/10.1002/adma.201402106
  9. Jiang, J., Li, Y., Liu, J., Huang, X., Yuan, C., and Lou, X.W., "Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage," Adv. Mater., Vol. 24, No. 38, 2012, pp. 5166-5180. https://doi.org/10.1002/adma.201202146
  10. Huang, C.W., Wu, C.A., Hou, S.S., Kuo, P.L., Hsieh, C.T., and Teng, H., "Gel Electrolyte Derived from Poly(ethylene glycol) Blending Poly(acrylonitrile) Applicable to Roll-to-roll Assembly of Electric Double Layer Capacitors," Adv. Funct. Mater., Vol. 22, No. 22, 2012, pp. 4677-4685. https://doi.org/10.1002/adfm.201201342
  11. Song, H.K. and Palmore, G.T.R., "Redox-active Polypyrrole: Toward Polymer-based Batteries," Adv. Mater., Vol. 18, No. 13, 2006, pp. 1764-1768. https://doi.org/10.1002/adma.200600375
  12. Wang, K., Zhao, P., Zhou, X., Wu, H., and Wei, Z., "Flexible Supercapacitors Based on Cloth-supported Electrodes of Conducting Polymer Nanowire Array/SWCNT Composites," J. Mater. Chem., Vol. 21, No. 41, 2011, pp. 16373-16378. https://doi.org/10.1039/c1jm13722k
  13. Lee, H., Kim, J.R., Lanagan, M.J., Trolier-Mckinstry, S., and Randall, C.A., "High-Energy Density Dielectrics and Capacitors for Elevated Temperatures: $Ca(Zr,Ti)O_3$," J. Am. Ceram. Soc., Vol. 96, No. 4, 2013, pp. 1209-1213. https://doi.org/10.1111/jace.12184
  14. Zhou, Z., Carr, J., Mackey, M., Yin, K., Schuele, D., Zhu, L., and Baer, E., "Interphase/interface Modification on the Dielectric Properties of Polycarbonate/poly(vinylidene fluoride-co-hexafluoropropylene) Multilayer Films for High-energy Density Capacitors," J. Poly. Sci., Part B: Polym. Phys., Vol. 51, No. 12, 2013, pp. 978-991. https://doi.org/10.1002/polb.23296
  15. Gui, Z., Zhu, H., Gillette, E., Han, X., Rubloff, G.W., Hu, L., and Lee, S.B., "Natural Cellulose Fiber as Substrate for Supercapacitor," ACS Nano, Vol. 7, No. 7, 2013, pp. 6037-6046. https://doi.org/10.1021/nn401818t
  16. Kahouli, A., Gallot-Lavallee, O., Rain, P., Lesaint, O., Guillermin, C., and Lupin, J.M., "Dielectric Features of Two Grades of Bi-oriented Isotactic Polypropylene," J. Appl. Polym. Sci., Vol. 132, No. 28, 2015.
  17. Karabelli, D., Lepretre, J.C., Dumas, L., Rouif, S., Portinha, D., Fleury, E., and Sanchez, J.Y., "Crosslinking of Poly(vinylene fluoride) Separators by Gamma-irradiation for Electrochemical High Power Charge Applications," Electrochim. Acta, Vol. 169, 2015, pp. 32-36. https://doi.org/10.1016/j.electacta.2015.04.034
  18. Kang, B.S., Choi, S.K., and Park, C.H., "Diffuse Dielectric Anomaly in Perovskite-type Ferroelectric Oxides in the Temperature Range of $400-700^{\circ}C$," J. Appl. Phy., Vol. 94, No. 3, 2003, pp. 1904-1911. https://doi.org/10.1063/1.1589595
  19. Cohen, R.E., "Origin of Ferroelectricity in Perovskite Oxides," Nature, Vol. 358, No. 6382, 1992, pp. 136-138. https://doi.org/10.1038/358136a0
  20. Chou, C.-C., Hou, C.-S., Chang, G.-C., and Cheng, H.-F., "Pulsed Laser Deposition of Ferroelectric $Pb_{0.6}Sr_{0.4}TiO_3$ Thin Films on Perovskite Substrates," Appl. Surf. Sci., Vol. 142, No. 1- 4, 1999, pp. 413-417. https://doi.org/10.1016/S0169-4332(98)00679-5
  21. Han, K., Li, Q., Chanthad, C., Gadinski, M.R., Zhang, G., and Wang, Q., "A Hybrid Material Approach Toward Solution-Processable Dielectrics Exhibiting Enhanced Breakdown Strength and High Energy Density," Adv. Funct. Mater., Vol. 25, No. 23, 2015, pp. 3505-3513. https://doi.org/10.1002/adfm.201501070
  22. Han, K., Li, Q., Chen, Z., Gadinski, M.R., Dong, L., Xiong, C., and Wang, Q., "Suppression of Energy Dissipation and Enhancement of Breakdown Strength in Ferroelectric Polymergraphene Percolative Composites," J. Mater. Chem. C, Vol. 1, No. 42, 2013, pp. 7034-7042. https://doi.org/10.1039/c3tc31556h
  23. Dean, C.R., Young, A.F., Merici, Leec, Wangl, Sorgenfreis, Watanabek, Taniguchit, Kimp, Shepard, K.L., and Honej, "Boron Nitride Substrates for High-quality Graphene Electronics," Nat. Nano, Vol. 5, No. 10, 2010, pp. 722-726. https://doi.org/10.1038/nnano.2010.172
  24. Jinhong, Y., Xingyi, H., Chao, W., and Pingkai, J., "Permittivity, Thermal Conductivity and Thermal Stability of Poly(vinylidene fluoride)/graphene Nanocomposites," IEEE Trans. Dielectr. Electr. Insul., Vol. 18, No. 2, 2011, pp. 478-484. https://doi.org/10.1109/TDEI.2011.5739452
  25. Pietralla, M., "High Thermal Conductivity of Polymers: Possibility or Dream?," J. Comput-Aided. Mater., Vol. 3, 1996, pp. 273-280. https://doi.org/10.1007/BF01185664
  26. Balandin, A.A., "Thermal Properties of Graphene and Nanostructured Carbon Materials," Nat. Mater., Vol. 10, 2011, pp. 569-580. https://doi.org/10.1038/nmat3064
  27. Rumyantsev, S.L., Levinshtein, M.E., Jackson, A.D., Mohammmad, S.N., Harris, G.L., Spencer, M.G., and Shur, M.S., Properties of Advanced Semiconductor Materials, pp. 67, New York: Wiley, 2001.
  28. Cho, H.-B., Shoji, M., Fujihara, T., Nakayama, T., Suematsu, H., Suzuki, T., and Niihara, K., "Anisotropic Alignment of Nonmodified BN Nanosheets in Polysiloxane Matrix under Nano Pulse Width Electricity," J. Ceram. Soc. Jpn., Vol. 118, No. 1373, 2010, pp. 66-69. https://doi.org/10.2109/jcersj2.118.66
  29. Wang, Y., Shi, Z., and Yin, J., "Boron Nitride Nanosheets: Largescale Exfoliation in Methanesulfonic Acid and Their Composites with Polybenzimidazole," J. Mater. Chem., Vol. 21, No. 30, 2011, pp. 11371-11377. https://doi.org/10.1039/c1jm10342c
  30. Zhi, C., Bando, Y., Tang, C., Kuwahara, H., and Golberg, D., "Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties," Adv. Mater., Vol. 21, No. 28, 2009, pp. 2889-2893. https://doi.org/10.1002/adma.200900323
  31. Lin, Y., Williams, T.V., Xu, T.-B., Cao, W., Elsayed-Ali, H.E., and Connell, J.W., "Aqueous Dispersions of Few-Layered and Monolayered Hexagonal Boron Nitride Nanosheets from Sonication- Assisted Hydrolysis: Critical Role of Water," J. Phys. Chem. C, Vol. 115, No. 6, 2011, pp. 2679-2685. https://doi.org/10.1021/jp110985w
  32. Song, X., Gao, J., Nie, Y., Gao, T., Sun, J., Ma, D., Li, Q., Chen, Y., Jin, C., Bachmatiuk, A., Rummeli, M., Ding, F., Zhang, Y., and Liu, Z., "Chemical Vapor Deposition Growth of Largescale Hexagonal Boron Nitride with Controllable Orientation," Nano Res., 2015, pp. 1-13.
  33. Cho, H.-B., Tokoi, Y., Tanaka, S., Suematsu, H., Suzuki, T., Jiang, W., Niihara, K., and Nakayama, T., "Modification of BN Nanosheets and Their Conducting Properties in Nanocomposite Film with Polysiloxane According to the Orientation of BN," Compos. Sci. Technol., Vol. 71, 2011, pp. 1046-1052. https://doi.org/10.1016/j.compscitech.2011.03.002
  34. Yorifuji, D., and Ando, S., "Enhanced Thermal Diffusivity by Vertical Double Percolation Structures in Polyimid Blend Films Containing Silver Nanoparticles," Macromol. Chem. Phys., Vol. 211, No. 19, 2010, pp. 2118-2114. https://doi.org/10.1002/macp.201000294
  35. Fujihara, T., Cho, H.-B., Nakayama, T., Suzuki, T., Jiang, W., Suematsu, H., Kim, H.-D., and Niihara, K., "Field-induced Orientation of Hexagonal Boron Nitride Nanosheets Using Microscopic Mold for Thermal Interface Materials," J. Am. Ceram. Soc., Vol. 95, No. 1, 2012, pp. 369-373. https://doi.org/10.1111/j.1551-2916.2011.04942.x
  36. Cho, H.-B., Tokoi, Y., Nakayama, T., Tanaka, S., Jiang, W., Suematsu, H., and Niihara, K., "Facile Orientation of Unmodified BN Nanosheets in Polysiloxane/BN Composite Films Using a High Magnetic Field," J. Mater. Sci., Vol. 46, No. 7, 2011, pp. 2318-2323. https://doi.org/10.1007/s10853-010-5075-2

Cited by

  1. Significantly Elevated Dielectric and Energy Storage Traits in Boron Nitride Filled Polymer Nano-composites with Topological Structure vol.14, pp.2, 2018, https://doi.org/10.1007/s13391-018-0032-3