Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.2.04

Powder Packing Behavior and Constrained Sintering in Powder Processing of Solid Oxide Fuel Cells (SOFCs)  

Lee, Hae-Weon (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST))
Ji, Ho-Il (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST))
Lee, Jong-Ho (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST))
Kim, Byung-Kook (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST))
Yoon, Kyung Joong (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST))
Son, Ji-Won (Center for Energy Materials Research, Korea Institute of Science and Technology (KIST))
Publication Information
Abstract
Widespread commercialization of solid oxide fuel cells (SOFCs) is expected to be realized in various application fields with the advent of cost-effective fabrication of cells and stacks in high volumes. Cost-reduction efforts have focused on production yield, power density, operation temperature, and continuous manufacturing. In this article, we examine several issues associated with processing for SOFCs from the standpoint of the bimodal packing model, considering the external constraints imposed by rigid substrates. Optimum compositions of composite cathode materials with high volume fractions of the second phase (particles dispersed in matrix) have been analyzed using the bimodal packing model. Constrained sintering of thin electrolyte layers is also discussed in terms of bimodal packing, with emphasis on the clustering of dispersed particles during anisotropic shrinkage. Finally, the structural transition of dispersed particle clusters during constrained sintering has been correlated with the structural stability of thin-film electrolyte layers deposited on porous solid substrates.
Keywords
Solid oxide fuel cell; Bimodal packing model; Constrained sintering; Anisotropic shrinkage; Structural stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. C. Singhal, "Solid Oxide Fuel Cells," Electrochem. Soc. Interface, 16 41-4 (2007).   DOI
2 S. C. Singhal and K. Kendall, High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications; Elsevier, 2003.
3 J. Fergus, R. Hui, X. Li, D. P. Wilkinson, and J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance; CRC Press, Taylor & Francis Group, 2016.
4 L. Fan, C. Wang, M. Chen, and B. Zhu, "Recent Development of Ceria-Based (Nano) Composite Materials for Low Temperature Ceramic Fuel Cells and Electrolyte-Free Fuel Cells," J. Power Sources, 234 154-74 (2013).   DOI
5 V. Haanappel, "Advances in Solid Oxide Fuel Cell Development between 1995 and 2010 at Forschungszentrum Julich GmbH, Germany," pp. 247-74 in Fuel Cell Science and Engineering. Ed. by D. Stolten and B. Emonts, Wiley-VCH Verlag GmbH & Co. KGaA; 2012.
6 A. Bieberle-Hutter, D. Beckel, U. P. Muecke, J. L. Rupp, A. Infortuna, and L. J. Gauckler, "Micro-Solid Oxide Fuel Cells as Battery Replacement," MST News, 4 12 (2005).
7 D. Beckel, A. Bieberle-Hütter, A. Harvey, A. Infortuna, U. P. Muecke, M. Prestat, J. L. Rupp, and L. J. Gauckler, "Thin Films for Micro Solid Oxide Fuel Cells," J. Power Sources, 173 [1] 325-45 (2007).   DOI
8 N. Q. Minh, "Solid Oxide Fuel Cell Technology-Features and Applications," Solid State Ionics, 174 [1-4] 271-77 (2004).   DOI
9 V. Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W. Herzhof, D. Sebold, and F. Tietz, "Optimisation of Processing and Microstructural Parameters of LSM Cathodes to Improve the Electrochemical Performance of Anode-Supported SOFCs," J. Power Sources, 141 [2] 216-26 (2005).   DOI
10 H. S. Song, W. H. Kim, S. H. Hyun, J. Moon, J. Kim, and H.-W. Lee, "Effect of Starting Particulate Materials on Microstructure and Cathodic Performance of Nanoporous LSM-YSZ Composite Cathodes," J. Power Sources, 167 [2] 258-64 (2007).   DOI
11 M. J. Jorgensen, S. Primdahl, C. Bagger, and M. Mogensen, "Effect of Sintering Temperature on Microstructure and Performance of LSM-YSZ Composite Cathodes," Solid State Ionics, 139 [1-2] 1-11 (2001).   DOI
12 F. F. Lange, "Powder Processing Science and Technology for Increased Reliability," J. Am. Ceram. Soc., 72 [1] 3-15 (1989).   DOI
13 M. D. Sacks and T. Y. Tseng, "Preparation of $SiO_2$ Glass from Model Powder Compacts: II, Sintering," J. Am. Ceram. Soc., 67 [8] 532-37 (1984).   DOI
14 H. W. Lee and M. D. Sacks, "Pressureless Sintering of SiC-Whisker-Reinforced $Al_2O_3$ Composites: I, Effect of Matrix Powder Surface Area," J. Am. Ceram. Soc., 73 [7] 1884-93 (1990).   DOI
15 E.-O. Oh, Thin Film Solid Oxide Fuel Cells (SOFCs) Fabricated by Chemical Solution Deposition (CSD) Route for Intermediate Temperature Operation, Ph.D. Thesis, Inha University, Incheon, 2012.
16 I.-Y. Kim, M. Biswas, J. Hong, K. J. Yoon, J.-W. Son, J.-H. Lee, B.-K. Kim, H.-J. Je, and H.-W. Lee, "Effect of Internal and External Constraints on Sintering Behavior of Thin Film Electrolytes for Solid Oxide Fuel Cells (SOFCs)," Ceram. Int., 40 [8] 13131-38 (2014).   DOI
17 R. Tomov, M. Krauz, J. Jewulski, S. Hopkins, J. Kluczowski, D. Glowacka, and B. A. Glowacki, "Direct Ceramic Inkjet Printing of Yttria-Stabilized Zirconia Electrolyte Layers for Anode-Supported Solid Oxide Fuel Cells," J. Power Sources, 195 [21] 7160-67 (2010).   DOI
18 K. Miller, F. Lange, and D. B. Marshall, "The Instability of Polycrystalline Thin Films: Experiment and Theory," J. Mater. Res., 5 [1] 151-60 (1990).   DOI
19 K. Mehta, R. Xu, and A. V. Virkar, "Two-Layer Fuel Cell Electrolyte Structure by Sol-Gel Processing," J. Sol-Gel Sci. Technol., 11 [2] 203-7 (1998).   DOI
20 F. Tietz, H.-P. Buchkremer, and D. Stover, "Components Manufacturing for Solid Oxide Fuel Cells," Solid State Ionics, 152 373-81 (2002).   DOI
21 Y. Leng, S. Chan, K. Khor, and S. Jiang, "Performance Evaluation of Anode-Supported Solid Oxide Fuel Cells with Thin Film YSZ Electrolyte," Int. J. Hydrogen Energy, 29 [10] 1025-33 (2004).   DOI
22 R. Scataglini, M. Wei, A. Mayyas, S. Chan, T. Lipman, and M. Santarelli, "A Direct Manufacturing Cost Model for Solid-Oxide Fuel Cell Stacks," Fuel Cells, 17 [6] 825-42 (2017).   DOI
23 L. C. De Jonghe, M. N. Rahaman, and C. J. Hsueh, "Transient Stresses in Bimodal Compacts during Sintering," Acta Mater., 34 [7] 1467-71 (1986).   DOI
24 M. W. Weiser and L. C. De Jonghe, "Inclusion Size and Sintering of Composite Powders," J. Am. Ceram. Soc., 71 [3] C125-27 (1988).
25 X. Xu, C. Xia, S. Huang, and D. Peng, "YSZ Thin Films Deposited by Spin-Coating for IT-SOFCs," Ceram. Int., 31 [8] 1061-64 (2005).   DOI
26 Y.-Y. Chen and W.-C. J. Wei, "Processing and Characterization of Ultra-Thin Yttria-Stabilized Zirconia (YSZ) Electrolytic Films for SOFC," Solid State Ionics, 177 [3-4] 351-57 (2006).   DOI
27 D. Perednis and L. J. Gauckler, "Solid Oxide Fuel Cells with Electrolytes Prepared via Spray Pyrolysis," Solid State Ionics, 166 [3-4] 229-39 (2004).   DOI
28 L. Blum, L. B. De Haart, J. Malzbender, N. H. Menzler, J. Remmel, and R. Steinberger-Wilckens, "Recent Results in Jülich Solid Oxide Fuel Cell Technology Development," J. Power Sources, 241 477-85 (2013).   DOI
29 C. Sun and U. Stimming, "Recent Anode Advances in Solid Oxide Fuel Cells," J. Power Sources, 171 [2] 247-60 (2007).   DOI
30 J. Otomo, J. Oishi, T. Mitsumori, H. Iwasaki, and K. Yamada, "Evaluation of Cost Reduction Potential for 1 kW Class SOFC Stack Production: Implications for SOFC Technology Scenario," Int. J. Hydrogen Energy, 38 [33] 14337-47 (2013).   DOI
31 K. Sopian and W. R. W. Daud, "Challenges and Future Developments in Proton Exchange Membrane Fuel Cells," Renewable energy, 31 [5] 719-27 (2006).   DOI
32 I. Bar-On, R. Kirchain, and R. Roth, "Technical Cost Analysis for PEM Fuel Cells," J. Power Sources, 109 [1] 71-5 (2002).   DOI
33 M. Rahaman and L. C. De Jonghe, "Effect of Rigid Inclusions on the Sintering of Glass Powder Compacts," J. Am. Ceram. Soc., 70 [12] C348-51 (1987).
34 O. Sudre and F. F. Lange, "Effect of Inclusions on Densification: I, Microstructural Development in an $Al_2O_3$ Matrix Containing a High Volume Fraction of $ZrO_2$ Inclusions," J. Am. Ceram. Soc., 75 [3] 519-24 (1992).   DOI
35 O. Sudre, G. Bao, B. Fan, F. F. Lange, and A. G. Evans, "Effect of Inclusions on Densification: II, Numerical Model," J. Am. Ceram. Soc., 75 [3] 525-31 (1992).   DOI
36 O. Sudre and F. F. Lange, "The Effect of Inclusions on Densification; III, the Desintering Phenomenon," J. Am. Ceram. Soc., 75 [12] 3241-51 (1992).   DOI
37 D. Stauer, A. Aharony, Introduction to Percolation Theory; Taylor and Francis, London, 1994.
38 M. Sahini and M. Sahimi, Applications of Percolation Theory; CRC Press, 2014.
39 T. S. Yeh and M. D. Sacks, "Effect of Green Microstructure on Sintering of Alumina," Ceramic. Trans., 7 309-31 (1990).
40 S. Timoshenko and J. N. Goodier, Theory of Elasticity; McGraw-Hill, New York, 1982.
41 R. M. German, "Prediction of Sintered Density for Bimodal Powder Mixtures," Metal. Trans. A, 23 [5] 1455-65 (1992).   DOI
42 F. F. Lange, "Constrained Network Model for Predicting Densification Behavior of Composite Powders," J. Mater. Res., 2 [1] 59-65 (1987).   DOI
43 R. Knibbe, J. Hjelm, M. Menon, N. Pryds, M. Sogaard, H. J. Wang, and K. Neufeld, "Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC," J. Am. Ceram. Soc., 93 [9] 2877-83 (2010).   DOI
44 D. Young, A. Sukeshini, R. Cummins, H. Xiao, M. Rottmayer, and T. Reitz, "Ink-Jet Printing of Electrolyte and Anode Functional Layer for Solid Oxide Fuel Cells," J. Power Sources, 184 [1] 191-96 (2008).   DOI
45 W. Bao, G. Zhu, J. Gao, and G. Meng, "Dense YSZ Electrolyte Films Prepared by Modified Electrostatic Powder Coating," Solid State Ionics, 176 [7-8] 669-74 (2005).   DOI
46 V. Mehta and J. S. Cooper, "Review and Analysis of PEM Fuel Cell Design and Manufacturing," J. Power Sources, 114 [1] 32-53 (2003).   DOI
47 B. D. James, A. B. Spisak, and W. G. Colella, Manufacturing Cost Analysis of Stationary Fuel Cell Systems; Strategic Analysis Inc. Arlington, VA, 2012.
48 R. Mueke, "Introduction to SOFC Technologies: Manufacturing of SOFCs," Joint European Summer School for Fuel Cell and Hydrogen Technology, Viterbo, Italy, 2011.
49 A. Tsoga, A. Gupta, A. Naoumidis, and P. Nikolopoulos, "Gadolinia-Doped Ceria and Yttria Stabilized Zirconia Interfaces: Regarding Their Application for SOFC Technology," Acta Mater., 48 [18-19] 4709-14 (2000).   DOI
50 H.-W. Lee, M. Park, J. Hong, H. Kim, K. J. Yoon, J.-W. Son, J.-H. Lee, and B.-K. Kim, "Constrained Sintering in Fabrication of Solid Oxide Fuel Cells," Materials, 9 [8] 675 (2016).   DOI
51 X.-D. Zhou, B. Scarfino, and H. U. Anderson, "Electrical Conductivity and Stability of Gd-Doped Ceria/Y-doped Zirconia Ceramics and Thin Films," Solid State Ionics, 175 [1-4] 19-22 (2004).   DOI
52 G. C. Kostogloudis and C. Ftikos, "Chemical Compatibility of $RE_{1−x}Sr_xMnO_{3{\pm}{\delta}}$ (RE= La, Pr, Nd, Gd, 0${\leq}$x${\leq}$0.5) with Yttria Stabilized Zirconia Solid Electrolyte," J. Eur. Ceram. Soc., 18 [12] 1707-10 (1998).   DOI
53 J. Labrincha, F. Marques, and J. Frade, "Protonic and Oxygen-Ion Conduction in $SrZrO_3$-Based Materials," J. Mater. Sci., 30 [11] 2785-92 (1995).   DOI
54 S. P. Simner, J. P. Shelton, M. D. Anderson, and J. W. Stevenson, "Interaction between $La(Sr)FeO_3$ SOFC Cathode and YSZ Electrolyte," Solid State Ionics, 161 [1-2] 11-8 (2003).   DOI
55 J. R. Wilson, A. T. Duong, M. Gameiro, H.-Y. Chen, K. Thornton, D. R. Mumm, and S. A. Barnett, "Quantitative Three-Dimensional Microstructure of a Solid Oxide Fuel Cell Cathode," Electrochem. Commun., 11 [5] 1052-56 (2009).   DOI
56 J. V. Milewski, "The Combined Packing of Rods and Spheres in Reinforcing Plastics," Ind. Eng. Chem. Prod. Res. Dev., 17 [4] 363-66 (1978).   DOI
57 J. V. Milewski, "Efficient Use of Whiskers in the Reinforcement of Ceramics," Adv. Ceram. Mat., 1 36-41 (1986).
58 R. M. German, Particle Packing Characteristics; pp. 135-80, Metal Powder Industries Federation, Princeton, 1989.
59 V. Dusastre and J. A. Kilner, "Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications," Solid State Ionics, 126 [1-2] 163-74 (1999).   DOI
60 E. P. Murray, M. Sever, and S. A. Barnett, "Electrochemical Performance of (La, Sr)(Co, Fe)$O_3$-(Ce, Gd)$O_3$ Composite Cathodes," Solid State Ionics, 148 [1-2] 27-34 (2002).   DOI
61 J. Moon, J.-A. Park, S.-J. Lee, and T. Zyung, "Insight into the Shear-Induced Ordering of Colloidal Particles by a Spin-Coating Method," Jpn. J. Appl. Phys., 47 [10R] 7968 (2008).   DOI
62 M. D. Sacks, "Properties of Silicon Suspensions and Cast Bodies," Am. Ceram. Soc. Bull., 63 [12] 1510 (1984).
63 D. J. Jeffrey and A. Acrivos, "The Rheological Properties of Suspensions of Rigid Particles," AlChE J., 22 [3] 417-32 (1976).   DOI
64 W. H. Boersma, J. Laven, and H. N. Stein, "Shear Thickening (Dilatancy) in Concentrated Dispersions," AlChE J., 36 [3] 321-32 (1990).   DOI
65 D. Chen, G. Yang, Z. Shao, and F. Ciucci, "Nanoscaled Sm-Doped $CeO_2$ Buffer Layers for Intermediate-Temperature Solid Oxide Fuel Cells," Electrochem. Commun., 35 131-34 (2013).   DOI
66 F. Tietz, D. Sebold, A. Brisse, and J. Schefold, "Degradation Phenomena in a Solid Oxide Electrolysis Cell after 9000 h of Operation," J. Power Sources, 223 129-35 (2013).   DOI
67 H. Shi, R. Ran, and Z. Shao, "Wet Powder Spraying Fabrication and Performance Optimization of IT-SOFCs with Thin-Film ScSZ Electrolyte," Int. J. Hydrogen Energy, 37 [1] 1125-32 (2012).   DOI
68 T. L. Nguyen, K. Kobayashi, T. Honda, Y. Iimura, K. Kato, A. Neghisi, K. Nozaki, F. Tappero, K. Sasaki, and H. Shirahama, "Preparation and Evaluation of Doped Ceria Interlayer on Supported Stabilized Zirconia Electrolyte SOFCs by Wet Ceramic Processes," Solid State Ionics, 174 [1-4] 163-74 (2004).   DOI
69 D. Wang, J. Wang, C. He, Y. Tao, C. Xu, and W. G. Wang, "Preparation of a $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$ Interlayer for Intermediate-Temperature Solid Oxide Fuel Cells by Spray Coating," J. Alloys Compd., 505 [1] 118-24 (2010).   DOI
70 Z. Gao, V. Y. Zenou, D. Kennouche, L. Marks, and S. A. Barnett, "Solid Oxide Cells with Zirconia/Ceria Bi-Layer Electrolytes Fabricated by Reduced Temperature Firing," J. Mater. Chem. A, 3 [18] 9955-64 (2015).   DOI
71 H.-S. Noh, K. J. Yoon, B.-K. Kim, H.-J. Je, H.-W. Lee, J.-H. Lee, and J.-W. Son, "The Potential and Challenges of Thin-Film Electrolyte and Nanostructured Electrode for Yttria-Stabilized Zirconia-Base Anode-Supported Solid Oxide Fuel Cells," J. Power Sources, 247 105-11 (2014).   DOI
72 T. Tsai, E. Perry, and S. Barnett, "Low-Temperature Solid-Oxide Fuel Cells Utilizing Thin Bilayer Electrolytes," J. Electrochem. Soc., 144 [5] L130-32 (1997).   DOI
73 O. Guillon, L. Weiler, and J. Rödel, "Anisotropic Microstructural Development during the Constrained Sintering of Dip-Coated Alumina Thin Films," J. Am. Ceram. Soc., 90 [5] 1394-400 (2007).   DOI
74 R. L. Hoffman, "Interrelationships of Particle Structure and Flow in Concentrated Suspensions," MRS Bull., 16 [8] 32-7 (1991).   DOI
75 D. J. Green, O. Guillon, and J. Rodel, "Constrained Sintering: A Delicate Balance of Scales," J. Eur. Ceram. Soc., 28 [7] 1451-66 (2008).   DOI
76 O. Guillon, S. Kraus, and J. Rodel, "Influence of Thickness on the Constrained Sintering of Alumina Films," J. Eur. Ceram. Soc., 27 [7] 2623-27 (2007).   DOI
77 J. Bernal and J. Mason, "Packing of Spheres: Co-Ordination of Randomly Packed Spheres," Nature, 188 [4754] 910-11 (1960).   DOI
78 W. M. Visscher and M. Bolsterli, "Random Packing of Equal and Unequal Spheres in Two and Three Dimensions," Nature, 239 [5374] 504-7 (1972).   DOI
79 E. Tory, N. Cochrane, and S. R. Waddell, "Anisotropy in Simulated Random Packing of Equal Spheres," Nature, 220 [5171] 1023-24 (1968).   DOI
80 R. Zallen, The Physics of Amorphous Solids; John Wiley & Sons, 2008.
81 G. W. Scherer, "Viscous Sintering of Particle-Filled Composites," Ceram. Bull., 70 [6] 1059-63 (1991).
82 R. K. Bordia and A. Jagota, "Crack Growth and Damage in Constrained Sintering Films," J. Am. Ceram. Soc., 76 [10] 2475-85 (1993).   DOI
83 D.-H. Myung, J. Hong, K. Yoon, B.-K. Kim, H.-W. Lee, J.-H. Lee, and J.-W. Son, "The Effect of an Ultra-Thin Zirconia Blocking Layer on the Performance of a 1-${\mu}m$-Thick Gadolinia-Doped Ceria Electrolyte Solid-Oxide Fuel Cell," J. Power Sources, 206 91-6 (2012).   DOI
84 Z. Lu, J. Hardy, J. Templeton, J. Stevenson, D. Fisher, N. Wu, and A. Ignatiev, "Performance of Anode-Supported Solid Oxide Fuel Cell with Thin Bi-Layer Electrolyte by Pulsed Laser Deposition," J. Power Sources, 210 292-96 (2012).   DOI
85 E. O. Oh, C. M. Whang, Y. R. Lee, S. Y. Park, D. H. Prasad, K. J. Yoon, J. W. Son, J. H. Lee, and H. W. Lee, "Extremely Thin Bilayer Electrolyte for Solid Oxide Fuel Cells (SOFCs) Fabricated by Chemical Solution Deposition (CSD)," Adv. Mater., 24 [25] 3373-77 (2012).   DOI
86 K. R. Iler, The Chemistry of Silica; pp. 480−488, John Wiley & Sons, New York, 1979.
87 P. Plonczak, M. Joost, J. Hjelm, M. Sogaard, M. Lundberg, and P. V. Hendriksen, "A High Performance Ceria Based Interdiffusion Barrier Layer Prepared by Spin-Coating," J. Power Sources, 196 [3] 1156-62 (2011).   DOI
88 E.-O. Oh, C.-M. Whang, Y.-R. Lee, S.-Y. Park, D. H. Prasad, K. J. Yoon, B.-K. Kim, J.-W. Son, J.-H. Lee, and H.-W. Lee, "Fabrication of Thin-Film Gadolinia-Doped Ceria (GDC) Interdiffusion Barrier Layers for Intermediate- Temperature Solid Oxide Fuel Cells (IT-SOFCs) by Chemical Solution Deposition (CSD)," Ceram. Int., 40 [6] 8135-42 (2014).   DOI
89 A. Atkinson, S. Barnett, R. J. Gorte, J. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, and J. Vohs, "Advanced Anodes for High-Temperature Fuel Cells," Nat. Mater., 3 [1] 17-7 (2004).   DOI
90 E.-O. Oh, C.-M. Whang, Y.-R. Lee, J.-H. Lee, K. J. Yoon, B.-K. Kim, J.-W. Son, J.-H. Lee, and H.-W. Lee, "Thin Film Yttria-Stabilized Zirconia Electrolyte for Intermediate- Temperature Solid Oxide Fuel Cells (IT-SOFCs) by Chemical Solution Deposition," J. Eur. Ceram. Soc., 32 [8] 1733-41 (2012).   DOI
91 X. Zhang and M. Robertson, C. Deces-Petit, Y. Xie, R. Hui, S. Yick, E. Styles, J. Roller, O. Kesler, R. Maric, "NiO-YSZ Cermets Supported Low Temperature Solid Oxide Fuel Cells," J. Power Sources, 161 [1] 301-7 (2006).   DOI
92 G. W. Scherer and T. Garino, "Viscous Sintering on a Rigid Substrate," J. Am. Ceram. Soc., 68 [4] 216-20 (1985).   DOI
93 F. F. Lange, "Processing-Related Fracture Origins: I, Observations in Sintered and Isostatically Hot-Pressed $A1_2O_3/ZrO_2$ Composites," J. Am. Ceram. Soc., 66 [6] 396-98 (1983).   DOI
94 F. F. Lange, "Densification of Powder Rings Constrained by Dense Cylindrical Cores," Acta Metall., 37 [2] 697-704 (1989).   DOI
95 R. Bordia and R. Raj, "Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate," J. Am. Ceram. Soc., 68 [6] 287-92 (1985).   DOI
96 C. H. Hsueh, "Sintering of a Ceramic Film on a Rigid Substrate," Scripta Metall., 19 [10] 1213-17 (1985).   DOI
97 R. Zuo, E. Aulbach, and J. Rodel, "Viscous Poisson's Coefficient Determined by Discontinuous Hot Forging," J. Mater. Res., 18 [9] 2170-76 (2003).   DOI
98 P. Z. Cai, D. J. Green, and G. L. Messing, "Constrained Densification of Alumina/Zirconia Hybrid Laminates, I: Experimental Observations of Processing Defects," J. Am. Ceram. Soc., 80 [8] 1929-39 (1997).   DOI
99 K. Huang and J. B. Goodenough, Solid Oxide Fuel Cell Technology: Principles, Performance and Operations; Elsevier, 2009.
100 R. O'Hayre, S. W. Cha, W. Colella, and F. B Prinz, Fuel Cell Fundamentals; Wiley, 2009.
101 J. T. Irvine, D. Neagu, M. C. Verbraeken, C. Chatzichrist odoulou, C. Graves, and M. B. Mogensen, "Evolution of the Electrochemical Interface in High-Temperature Fuel Cells and Electrolysers," Nat. Energy, 1 [1] 15014 (2016).   DOI
102 W. H. Kan and V. Thangadurai, "Challenges and Prospects of Anodes for Solid Oxide Fuel Cells (SOFCs)," Ionics, 21 [2] 301-18 (2015).   DOI
103 E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011).   DOI
104 J. Huijsmans, F. Van Berkel, and G. Christie, "Intermediate Temperature SOFC-a Promise for the 21st Century," J. Power Sources, 71 [1-2] 107-10 (1998).   DOI
105 N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier Science B.V., Amsterdam, 1995.
106 A. S. Thorel, "Tape Casting Ceramics for High Temperature Fuel Cell Applications, Ceramic Materials," pp. 1-68 in Ceramic Materials. Ed. By W. Wunderlich, Sciyo, 2010.
107 A. B. Stambouli and E. Traversa, "Solid Oxide Fuel Cells (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy," Renewable Sustainable Energy Rev., 6 [5] 433-55 (2002).   DOI
108 S. C. Singhal, "Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications," Solid State Ionics, 152 405-10 (2002).   DOI
109 O. Yamamoto, "Solid Oxide Fuel Cells: Fundamental Aspects and Prospects," Electrochim. Acta, 45 [15-16] 2423-35 (2000).   DOI
110 N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76 [3] 563-88 (1993).   DOI
111 S. C. Singhal, "Advances in Solid Oxide Fuel Cell Technology," Solid State Ionics, 135 [1-4] 305-13 (2000).   DOI
112 L. Blum, L. De Haart, J. Malzbender, N. Margaritis, and N. H. Menzler, "Anode-Supported Solid Oxide Fuel Cell Achieves 70000 Hours of Continuous Operation," Energy Technol., 4 [8] 939-42 (2016).   DOI
113 C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, and R. J. S. O'Hayre, "Readily Processed Protonic Ceramic Fuel Cells with High Performance at Low Temperatures," Science, 349 [6254] 1321-26 (2015).   DOI
114 H. An, H.-W. Lee, B.-K. Kim, J.-W. Son, K. J. Yoon, H. Kim, D. Shin, H.-I. Ji, and J.-H. Lee, "$A5{\times}5cm^2$ Protonic Ceramic Fuel Cell with a Power Density of $1.3Wcm^{-2}$ at $600^{\circ}C$," Nat. Energy, 3 [10] 870 (2018).   DOI
115 Y. Pan, J. Zhu, M. Z. Hu, and E. A. Payzant, "Processing of YSZ Thin Films on Dense and Porous Substrates," Surf. Coat. Technol., 200 [5-6] 1242-47 (2005).   DOI
116 P. Z. Cai, D. J. Green, and G. L. Messing, "Constrained Densification of Alumina/Zirconia Hybrid Laminates, II: Viscoelastic Stress Computation," J. Am. Ceram. Soc., 80 [8] 1940-48 (1997).   DOI
117 T. V. Gestel, D. Sebold, W. A. Meulenberg, and H.-P. Buchkremer, "Development of Thin-Film Nano-Structured Electrolyte Layers for Application in Anode-Supported Solid Oxide Fuel Cells," Solid State Ionics, 179 [11-12] 428-37 (2008).   DOI
118 T. V. Gestel, D. Sebold, and H. P. Buchkremer, "Processing of 8YSZ and CGO Thin Film Electrolyte Layers for Intermediate- and Low-Temperature SOFCs," J. Eur. Ceram. Soc., 35 [5] 1505-15 (2015).   DOI
119 D. Nikbin, "Micro SOFCs: Why Small is Beautiful," Fuel Cell Review, 3 [2] 21-4 (2006).
120 B. Zhu, "Functional Ceria-Salt-Composite Materials for Advanced ITSOFC Applications," J. Power Sources, 114 [1] 1-9 (2003).   DOI
121 K. Lee, J. Kang, S. Jin, S. Lee, and J. Bae, "A Novel Sol-Gel Coating Method for Fabricating Dense Layers on Porous Surfaces Particularly for Metal-Supported SOFC Electrolyte," J. Int. Hydrogen Energy, 42 [9] 6220-30 (2017).   DOI
122 F. Han, R. Mucke, T. Van Gestel, A. Leonide, N. H. Menzler, H. P. Buchkremer, and D. Stover, "Novel High-Performance Solid Oxide Fuel Cells with Bulk Ionic Conductance Dominated Thin-Film Electrolytes," J. Power Sources, 218 157-62 (2012).   DOI
123 J.-D. Kim, G.-D. Kim, J.-W. Moon, H.-W. Lee, K.-T. Lee, and C.-E. Kim, "The Effect of Percolation on Electrochemical Performance," Solid State Ionics, 133 [1-2] 67-77 (2000).   DOI
124 M. Park, H. Y. Jung, J. Y. Kim, H. Kim, K. J. Yoon, J.-W. Son, J.-H. Lee, B.-K. Kim, and H.-W. Lee, "Effects of Mixing State of Composite Powders on Sintering Behavior of Cathode for Solid Oxide Fuel Cells," Ceram. Int., 43 [15] 11642-47 (2017).   DOI
125 H. Lin, C. Ding, K. Sato, Y. Tsutai, H. Ohtaki, M. Iguchi, C. Wada, and T. Hashida, "Preparation of SDC Electrolyte Thin Films on Dense and Porous Substrates by Modified Sol-Gel Route," Mater. Sci. Eng., B, 148 [1-3] 73-6 (2008).   DOI
126 C. Peters, A. Weber, B. Butz, D. Gerthsen, and E. Ivers-Tiffee, "Grain-Size Effects in YSZ Thin-Film Electrolytes," J. Am. Ceram. Soc., 92 [9] 2017-24 (2009).   DOI
127 L. C. De Jonghe, C. P. Jacobson, and S. J. Visco, "Supported Electrolyte Thin Film Synthesis of Solid Oxide Fuel Cells," Annu. Rev. Mater. Res., 33 [1] 169-82 (2003).   DOI