• Title/Summary/Keyword: Communication Chip

Search Result 970, Processing Time 0.025 seconds

Design of Encryption/Decryption Core for Block Cipher HIGHT (블록 암호 HIGHT를 위한 암·복호화기 코어 설계)

  • Sonh, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.778-784
    • /
    • 2012
  • A symmetric block cryptosystem uses an identical cryptographic key at encryption and decryption processes. HIGHT cipher algorithm is 64-bit block cryptographic technology for mobile device that was authorized as international standard by ISO/IEC on 2010. In this paper, block cipher HIGHT algorithm is designed using Verilog-HDL. Four modes of operation for block cipher such as ECB, CBC, OFB and CTR are supported. When continuous message blocks of fixed size are encrypted or decrypted, the desigend HIGHT core can process a 64-bit message block in every 34-clock cycle. The cryptographic processor designed in this paper operates at 144MHz on vertex chip of Xilinx, Inc. and the maximum throughput is 271Mbps. The designed cryptographic processor is applicable to security module of the areas such as PDA, smart card, internet banking and satellite broadcasting.

The Switching Technique to the Alternative Frequency on RDS Broadcastment (RDS 방송에서 대체주파수로의 전환기법에 관한 연구)

  • Hwang, Jong-Hyun;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2379-2384
    • /
    • 2010
  • The reception quality of broadcasting in car radio system may become poor due to the noise such as week signal strength, multipath, Adjacent Channel and so on. To improve this, some european nations and US. serve RDS(Radio Data System) on FM radio, AF(Alternative Frequency) and PI(Programme Identification) code contained information in RDS data are used to switch to the broadcasting having the best reception quality. There are many techniques and studies of maintaining the best reception quality. But many previous techniques are no longer the best way because RF chips are improved every year and noise components can be distinguished in detail. So this research will suggest the best switching technique to maintain the best reception quality.

A 2.5V 0.25㎛ CMOS Temperature Sensor with 4-bit SA ADC (4-비트 축차근사형 아날로그-디지털 변환기를 내장한 2.5V 0.25㎛ CMOS 온도 센서)

  • Kim, Mungyu;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.378-384
    • /
    • 2013
  • In this paper, a CMOS temperature sensor is proposed to measure the internal temperature of a chip. The temperature sensor consists of a proportional-to-absolute-temperature (PTAT) circuit for a temperature sensing part and a 4-bit analog-to-digital converter (ADC) for a digital interface. The PTAT circuit with the compact area is designed by using a vertical PNP architecture in the CMOS process. To reduce sensitivity of temperature variation in the digital interface circuit of the proposed temperature sensor, a 4-bit successive approximation (SA) ADC using the minimum analog circuits is used. It uses a capacitor-based digital-to-analog converter and a time-domain comparator to minimize power consumption. The proposed temperature sensor was fabricated by using a $0.25{\mu}m$ 1-poly 6-metal CMOS process with a 2.5V supply, and its operating temperature range is from 50 to $150^{\circ}C$. The area and power consumption of the fabricated temperature sensor are $130{\times}390{\mu}m^2$ and $868{\mu}W$, respectively.

A Study on the Hardware Complexity Reduction of Hilbert transformer by MAG algorithm (MAG 알고리즘에 의한 힐버트 변환기의 하드웨어 복잡도 감소에 관한 연구)

  • Kim, Young-Woong;Lee, Young-Seock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.364-370
    • /
    • 2011
  • The Hilbert transform performs a role to transform band pass signals into low pass signals in wireless communication systems. The operation of Hilbert transform is based on a convolution process which is required adding and multiplying calculations. When the Hilbert transform is designed and hardware-implemented at gate level, the adding and multiplying operation requires a high power consumption and a occupation of wide area on a chip. So the results of adding and multiplying operation cause to degrade the performance of implemented system. In this paper, the new Hilbert transformer is proposed, which has a low hardware complexity by application of MAG(Minimum Adder Graph) algorithm. The proposed Hilbert transformer was simulated in ISE environment of Xilinx and showed the reduction of hardware complexity comparing with the number of gate in the conventional Hilbert transformer.

Reconfigurable Architecture Design for H.264 Motion Estimation and 3D Graphics Rendering of Mobile Applications (이동통신 단말기를 위한 재구성 가능한 구조의 H.264 인코더의 움직임 추정기와 3차원 그래픽 렌더링 가속기 설계)

  • Park, Jung-Ae;Yoon, Mi-Sun;Shin, Hyun-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • Mobile communication devices such as PDAs, cellular phones, etc., need to perform several kinds of computation-intensive functions including H.264 encoding/decoding and 3D graphics processing. In this paper, new reconfigurable architecture is described, which can perform either motion estimation for H.264 or rendering for 3D graphics. The proposed motion estimation techniques use new efficient SAD computation ordering, DAU, and FDVS algorithms. The new approach can reduce the computation by 70% on the average than that of JM 8.2, without affecting the quality. In 3D rendering, midline traversal algorithm is used for parallel processing to increase throughput. Memories are partitioned into 8 blocks so that 2.4Mbits (47%) of memory is shared and selective power shutdown is possible during motion estimation and 3D graphics rendering. Processing elements are also shared to further reduce the chip area by 7%.

A Combined BTB Architecture for effective branch prediction (효율적인 분기 예측을 위한 공유 구조의 BTB)

  • Lee Yong-hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1497-1501
    • /
    • 2005
  • Branch instructions which make the sequential instruction flow changed cause pipeline stalls in microprocessor. The pipeline hazard due to branch instructions are the most serious problem that degrades the performance of microprocessors. Branch target buffer predicts whether a branch will be taken or not and supplies the address of the next instruction on the basis of that prediction. If the hanch target buffer predicts correctly, the instruction flow will not be stalled. This leads to the better performance of microprocessor. In this paper, the architecture of a ta8 memory that branch target buffer and TLB can share is presented. Because the two tag memories used for branch target buffer and TLB each is replaced by single combined tag memory, we can expect the smaller chip size and the faster prediction. This shared tag architecture is more advantageous for the microprocessors that uses more bits of address and exploits much more instruction level parallelism.

A 1.8 V 40-MS/sec 10-bit 0.18-㎛ CMOS Pipelined ADC using a Bootstrapped Switch with Constant Resistance

  • Eo, Ji-Hun;Kim, Sang-Hun;Kim, Mun-Gyu;Jang, Young-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2012
  • A 40-MS/sec 10-bit pipelined analog to digital converter (ADC) with a 1.2 Vpp differential input signal is proposed. The implemented pipelined ADC consists of eight stages of 1.5 bit/stage, one stage of 2 bit/stage, a digital error correction block, band-gap reference circuit & reference driver, and clock generator. The 1.5 bit/stage consists of a sub-ADC, digital to analog (DAC), and gain stage, and the 2.0 bit/stage consists of only a 2-bit sub-ADC. A bootstrapped switch with a constant resistance is proposed to improve the linearity of the input switch. It reduces the maximum VGS variation of the conventional bootstrapped switch by 67%. The proposed bootstrapped switch is used in the first 1.5 bit/stage instead of a sample-hold amplifier (SHA). This results in the reduction of the hardware and power consumption. It also increases the input bandwidth and dynamic performance. A reference voltage for the ADC is driven by using an on-chip reference driver without an external reference. A digital error correction with a redundancy is also used to compensate for analog noise such as an input offset voltage of a comparator and a gain error of a gain stage. The proposed pipelined ADC is implemented by using a 0.18-${\mu}m$ 1- poly 5-metal CMOS process with a 1.8 V supply. The total area including a power decoupling capacitor and the power consumption are 0.95 $mm^2$ and 51.5 mW, respectively. The signal-to-noise and distortion ratio (SNDR) is 56.15 dB at the Nyquist frequency, resulting in an effective number of bits (ENOB) of 9.03 bits.

Design of a Fast 256Kb EEPROM for MCU (MCU용 Fast 256Kb EEPROM 설계)

  • Kim, Yong-Ho;Park, Heon;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.567-574
    • /
    • 2015
  • In this paper, a 50ns 256-kb EEPROM IP for MCU (micro controller unit) ICs is designed. The speed of data sensing is increased in the read mode by using a proposed DB sensing circuit of differential amplifier type which uses the reference voltage, and the switching speed is also increased by reducing the total DB parasitic capacitance as a distributed DB structure is separated into eight. Also, the access time is reduced reducing a precharging time of BL in the read mode removing a 5V NMOS transistor in the conventional RD switch, and the reliability of output data can be secured by obtaining the differential voltage (${\Delta}V$) between the DB and the reference voltages as 0.2*VDD. The access time of the designed 256-kb EEPROM IP is 45.8ns and the layout size is $1571.625{\mu}m{\times}798.540{\mu}m$ based on MagnaChip's $0.18{\mu}m$ EEPROM process.

Stable Power Plan Technique for Implementing SoC (SoC 구현을 위한 안정적인 Power Plan 기법)

  • Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2731-2740
    • /
    • 2012
  • ASIC(application specific integrated circuit) process is a set of various technologies for fabricating a chip. Generally there have been many researches for RTL design, synthesis, floor plan & routing, low power scheme, clock tree synthesis, and testability which are widely researched in recent. In this paper we propose a new methodology of power strap routing in basis of design experience and experiment. First the power strap for vertical VDD and VSS and horizontal VDD and VSS is routed, and then after the problems which are generated in this process are analyzed, we propose a new process for resolving them. For this, the strap guide is inserted to protect the unnecessary strap routing and dumped for next steps. Next the unnecessary power straps which are generated the first inserting process are removed, and the pre-routing is performed for the macro cells. Finally the resultant power straps are routed using the dumped routing guide. Through the proposed process we identified the efficient and stable route of the power straps.

Design of the Voltage Controlled Oscillator for Low Voltage (저전압용 전압제어발진기의 설계)

  • Lee, Jong-In;Jung, Dong-Soo;Jung, Hak-Kee;Yoon, Young-Nam;Lee, Sang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2480-2486
    • /
    • 2012
  • The design of low voltage LC-VCO(LC Voltage Controlled Oscillator) has been presented to optimize the phase noise and power consumption for the block of frequency synthesis to satisfy WCDMA system specification in this paper. The parameters for minimum phase noise has been obtained in the region of design, using the lines of the tuning range and the excess gain in the plane of the inductance and the transconductance of MOS transistor to compensate the loss of LC-tank. As a result of simulation, the phase noise characteristics is -113dBc/Hz for offset of 1MHz. The optimum designed LC-VCO has been fabricated using the process of 0.25um CMOS. As a result of measurement for fabricated chip, the phase noise characteristics is -116dBc/Hz for offset of 1MHz. The power consumption is 15mW, and Kvco is 370MHz/V.