• Title/Summary/Keyword: Co interlayer

Search Result 147, Processing Time 0.023 seconds

Interlayer Coupling Field in Spin Valves with CoEe/Ru/CoFe/FeMn Synthetic Antiferromagnet (Synthetic antiferromagnet CoFe/Ru/CoFe/FeMn을 이용한 스핀 밸브 구조의 interlayer coupling field)

  • Kim, K.Y.;Shin, K.H.;Kim, H.J.;Jang, S.H.;Kang, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.203-209
    • /
    • 2000
  • Top synthetic spin valves with structure Ta/NiFe/CoFe/Cu/CoFe(P 1)/Ru/CoFe(P2)/FeMn/Ta on Si (100) substrate with natural oxide were prepared by dc magnetron sputtering system. We have changed only the thickness in free layers and the thickness difference (Pl-P2) in two ferromagnetic layers separated by Ru, and investigated the effect of magnetic film thickness on interlayer coupling field in spin valve with synthetic antiferromagnet. According to the decrease of free layer thickness, interlayer coupling field was increased due to the magnetostatic coupling(orange peel coupling). In case of t$\_$P1/>t$\^$P2/, interlayer coupling field agreed well with the modified Neel model suggested in conventional spin valve structures by Kools et al. However, in case of t$\_$P1/>t$\^$P2/, it was found that the interlayer coupling field was not explained by the Modified Neel Model and was confirmed the necessity of further remodeling. The dependence of Cu thickness on the interlayer coupling field was investigated and 10 Oe of interlayer coupling field was obtained when the Cu thickness is 32 $\AA$.

  • PDF

Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate (초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과)

  • Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.68-74
    • /
    • 2013
  • For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{\mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{\mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{\circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{\mu}m$ with a fixed $2{\mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.

Reflection-amplitude Approximation for the Interlayer Exchange Coupling in (001) Co/Cu/Co Multilayers

  • Lee, B. C.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.191-199
    • /
    • 2000
  • The reflection-amplitude approximation is used to calculate the interlayer exchange coupling in (001) Co/Cu/Co multilayers. The dependence of the phase factor of the reflection amplitude on the energy and wave vector is included. The contribution of each period is calculated and the results are compared with those from the asymptotic behavior. It is shown that the energy and wave-vector dependence of the phase factor may affect the interlayer exchange coupling significantly.

  • PDF

Effect of the Phase Factor of the Reflection Amplitude on the Interlayer Exchange Coupling in (001) Co/Cu/Co Multilayers

  • Lee, B.C.
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.43-46
    • /
    • 2001
  • The reflection-amplitude approximation is used to calculate the interlayer exchange coupling in (001) Co/Cu/Co multilayers. The dependence of the phase factor of the reflection amplitude on the energy and wave vector is included. The contribution of each period is calculated and the results are compared with those from asymptotic behavior. It is shown that the energy and wave-vector dependence of the phase factor may affect the interlayer exchange coupling significantly.

  • PDF

A Study on Thermal Stability Improvement in Ni Germanide/p-Ge using Co interlayer for Ge MOSFETs

  • Shin, Geon-Ho;Kim, Jeyoung;Li, Meng;Lee, Jeongchan;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.277-282
    • /
    • 2017
  • Nickel germanide (NiGe) is one of the most promising alloy materials for source/drain (S/D) of Ge MOSFETs. However, NiGe has limited thermal stability up to $450^{\circ}C$ which is a challenge for fabrication of Ge MOSFETs. In this paper, a novel method is proposed to improve the thermal stability of NiGe using Co interlayer. As a result, we found that the thermal stability of NiGe was improved from $450^{\circ}C$ to $570^{\circ}C$ by using the proposed Co interlayer. Furthermore, we found that current-voltage (I-V) characteristic was improved a little by using Co/Ni/TiN structure after post-annealing. Therefore, NiGe formed by the proposed Co interlayer that is, Co/Ni/TiN structure, is a promising technology for S/D contact of Ge MOSFETs.

Effect of Ti Interlayer Thickness on Epitaxial Growth of Cobalt Silicides (중간층 Ti 두께에 따른 CoSi2의 에피텍시 성장)

  • Choeng, Seong-Hwee;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2003
  • Co/Ti bilayer structure in Co salicide process helps to the improvement of device speed by lowering contact resistance due to the epitaxial growth of $CoSi_2$layers. We investigated the epitaxial growth and interfacial mass transport of $CoSi_2$layers formed from $150 \AA$-Co/Ti structure with two step rapid thermal annealing (RTA). The thicknesses of Ti layers were varied from 20 $\AA$ to 100 $\AA$. After we confirmed the appropriate deposition of Ti film even below $100\AA$-thick, we investigated the cross sectional microstructure, surface roughness, eptiaxial growth, and mass transportation of$ CoSi_2$films formed from various Ti thickness with a cross sectional transmission electron microscopy XTEM), scanning probe microscopy (SPM), X-ray diffractometery (XRD), and Auger electron depth profiling, respectively. We found that all Ti interlayer led to$ CoSi_2$epitaxial growth, while $20 \AA$-thick Ti caused imperfect epitaxy. Ti interlayer also caused Co-Ti-Si compounds on top of $CoSi_2$, which were very hard to remove selectively. Our result implied that we need to employ appropriate Ti thickness to enhance the epitaxial growth as well as to lessen Co-Ti-Si compound formation.

Effect of silica top layer and Co interlayer on the thermal stability of nickel silicide (니켈 실리사이드의 열안정성에 대한 실리카 상부막과 코발트 중간막의 영향)

  • Han Kil Jin;Cho Yu Jung;Kim Yeong Cheol;Oh Soon Young;Kim Yong Jin;Lee Won Jae;Lee Hi Deok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.7-10
    • /
    • 2005
  • [ $SiO_{2}$ ] or SiON is usually deposited and annealed after formation of silicide in real transistor fabrication processes. Nickel silicide and nickel silicide with Co interlayer were annealed at 650$^{\circ}C$ for 30 min with silica top layer in this study to investigate its thermal stability. SEM, XPS, and FPP(four point probe) were employed for the investigation. Nickel silicide with Co interlayer showed improved thermal stability. Co interlayer seems to play a key role to the stability of nickel silicide.

  • PDF

Interlayer Coupling of CoFe/Cu/NiFe Trilayer Films

  • Baek, Jong-Sung;Lim, Woo-Woung;Lee, Soo-Hyung;Kim, Mee-Yang;Rhee, Jang-Roh
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.139-142
    • /
    • 2000
  • The interlayer coupling between adjacent ferromagnetic layers was examined for CoFe/Cu/NiFe trilayer systems. A series of films of CoFe (20 nm)/Cu($t_{cu}$)/NiFe (20 nm) trilayers with Cu spacer thickness, $t_{cu}$, in the range of 1~10 m was deposited on Si(100) wafers at room temperature by DC magnetron sputtering. In order to understand the dependence of the magnetic interaction between ferromagnetic $Co_{90}Fe_{10}$ (wt.%) and $Ni_{81}Fe_{19}$ (wt.%) layers separated by a nonmagnetic Cu spacer on the Cu layer thickness, we investigated the derivative ferromagnetic resonance (FMR) spectra. The FMR results were analyzed using the model of Layadi and Art-man for interlayer interaction. The interlayer coupling constant decreases in an oscillatory manner as the Cu spacer thickness increases up to 10 nm and approaches zero above 10 nm. The interlayer coupling constant is positive for all samples. Hence, it seems that the exchange coupling between adjacent CoFe and NiFe layers separated by a Cu layer is ferromagnetic.

  • PDF

Novel Ni-Silicide Structure Utilizing Cobalt Interlayer and TiN Capping Layer and its Application to Nano-CMOS (Cobalt Interlayer 와 TiN capping를 갖는 새로운 구조의 Ni-Silicide 및 Nano CMOS에의 응용)

  • 오순영;윤장근;박영호;황빈봉;지희환;왕진석;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, a novel Ni silicide technology with Cobalt interlayer and Titanium Nitride(TiN) capping layer for sub 100 nm CMOS technologies is presented, and the device parameters are characterized. The thermal stability of hi silicide is improved a lot by applying co-interlayer at Ni/Si interface. TiN capping layer is also applied to prevent the abnormal oxidation of NiSi and to provide a smooth silicidc interface. The proposed NiSi structure showed almost same electrical properties such as little variation of sheet resistance, leakage current and drive current even after the post silicidation furnace annealing at $700^{\circ}C$ for 30 min. Therefore, it is confirmed that high thermal robust Ni silicide for the nano CMOS device is achieved by newly proposed Co/Ni/TiN structure.

Pt Thickness Dependence of Oscillatory Interlayer Exchange Coupling in [CoFe/Pt/CoFe]/IrMn Multilayers with Perpendicular Anisotropy

  • Lee, Sang-Suk;Choi, Jong-Gu;Kim, Sun-Wook;Hwang, Do-Guwn;Rhee, Jang-Roh
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.44-47
    • /
    • 2005
  • The oscillatory interlayer exchange coupling (IEC) has been shown in pinned $[CoFe/Pt(t_{pt})/CoFe]/IrMn$ multi-layers with perpendicular anisotropy. The period of oscillation corresponds to about 2 monolayers of Pt. The oscillatory behavior of IEC depending on the nonmagnetic metallic Pt thickness is thought to be related the antiferromagnetic ordering induced by IrMn layer. Oscillatory IEC as function of insulating NiO thickness has been observed in $[Pt/CoFe]_4/NiO(t_{NiO})/[CoFe/Pt]_4$ multilayers. The effect of N (number of bilayer repeats) upon the magnetic property of [Pt/CoFe]N/IrMn is also studied.