Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.2.088

Effect of Ti Interlayer Thickness on Epitaxial Growth of Cobalt Silicides  

Choeng, Seong-Hwee (Department of Materials Science and Engineering, The University of Seoul)
Song, Oh-Sung (Department of Materials Science and Engineering, The University of Seoul)
Publication Information
Korean Journal of Materials Research / v.13, no.2, 2003 , pp. 88-93 More about this Journal
Abstract
Co/Ti bilayer structure in Co salicide process helps to the improvement of device speed by lowering contact resistance due to the epitaxial growth of $CoSi_2$layers. We investigated the epitaxial growth and interfacial mass transport of $CoSi_2$layers formed from $150 \AA$-Co/Ti structure with two step rapid thermal annealing (RTA). The thicknesses of Ti layers were varied from 20 $\AA$ to 100 $\AA$. After we confirmed the appropriate deposition of Ti film even below $100\AA$-thick, we investigated the cross sectional microstructure, surface roughness, eptiaxial growth, and mass transportation of$ CoSi_2$films formed from various Ti thickness with a cross sectional transmission electron microscopy XTEM), scanning probe microscopy (SPM), X-ray diffractometery (XRD), and Auger electron depth profiling, respectively. We found that all Ti interlayer led to$ CoSi_2$epitaxial growth, while $20 \AA$-thick Ti caused imperfect epitaxy. Ti interlayer also caused Co-Ti-Si compounds on top of $CoSi_2$, which were very hard to remove selectively. Our result implied that we need to employ appropriate Ti thickness to enhance the epitaxial growth as well as to lessen Co-Ti-Si compound formation.
Keywords
cobalt disilicide; Ti interlayer; epitaxial; salicide; Co/Ti bilayer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 ?J. S. Byun, D. H. Kim and W. S. Kim, J. Appl. Phys., 78, 1725 (1995)   DOI   ScienceOn
2 J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er and S. Redkar, Appl. Phys. Lett., 78, 3091 (2001)   DOI   ScienceOn
3 J. Prokop, C. E. Zybill, and S. Veprek, Thin Solid Films, 359, 39 (2000)   DOI   ScienceOn
4 C. Detavernier, R. L. V. Meirhaeghe and F. Cardon, J. Appl. Phys., 88, 133 (2000)   DOI   ScienceOn
5 K. Maex, A. Lauwers, P. Besser, E. Kondoh, M. Potter and A. Steegen, IEEE Trans. Electron Devices, 46, 1545 (1999)   DOI   ScienceOn
6 R. T. Tung, Applied Surface Science, 117/118, 268 (1997)   DOI   ScienceOn
7 H. Zhang, J. Poole, R. Eller and M. Keefe, J. Vac. Sci. Technol. A, 17, 1904 (1999)   DOI
8 S. L. Hsia, T. Y. Tan, P. Smith and G. E. McGuire, J. Appl. Phys., 70, 1308 (1991)   DOI
9 J. Lutze, G. Scott and M. Manley, IEEE Electron Device Lett., 21, 155 (2000)   DOI   ScienceOn
10 H. Fang, M. C. Oztu, E. G. Seebauer and D. E. Batchelor, J. Electrochem. Soc., 146, 4240 (1999)   DOI
11 G. B. Kim and H. K. Baik, Appl. Phys. Lett., 69, 3498 (1996)   DOI   ScienceOn
12 D. P. Adams, S. M. Yalisove and D. J. Eaglesham, J. Appl. Phys., 76, 5190 (1994)   DOI   ScienceOn
13 T. S. Kang and J. H. Je, Appl. Phys. Lett., 80, 1361 (2002)   DOI   ScienceOn
14 T. S. Kang, J. H. Je, G. B. Kim, H. K. Baik and S. Lee, J. Vac. Sci. Technol. B, 18, 1953 (2000)   DOI   ScienceOn
15 J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geizz, IEEE Trans. Electron. Devices, 38, 262 (1991)   DOI   ScienceOn
16 R. T. Tung, MRS Symp. Proc., 427, 481 (1996)   DOI
17 M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys. Lett., 58, 1308 (1991)   DOI