• Title/Summary/Keyword: CMOS transistor

Search Result 364, Processing Time 0.019 seconds

An Offset and Deadzone-Free Constant-Resolution Phase-to-Digital Converter for All-Digital PLLs (올-디지털 위상 고정 루프용 오프셋 및 데드존이 없고 해상도가 일정한 위상-디지털 변환기)

  • Choi, Kwang-Chun;Kim, Min-Hyeong;Choi, Woo-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.122-133
    • /
    • 2013
  • An arbiter-based simple phase decision circuit (PDC) optimized for high-resolution phase-to-digital converter made up of an analog phase-frequency detector and a time-to-digital converter for all-digital phase-locked loops is proposed. It can distinguish very small phase difference between two pulses even though it consumes lower power and has smaller input-to-output delay than the previously reported PDC. Proposed PDC is realized using 130-nm CMOS process and demonstrated by transistor-level simulations. A 5-bit P2D having no offset nor deadzone using the PDC is also demonstrated. A harmonic-lock-free and small-phase-offset delay-locked loop for fixing the P2D resolution regardless of PVT variations is also proposed and demonstrated.

Fluorine Effects on CMOS Transistors in WSix-Dual Poly Gate Structure (텅스텐 실리사이드 듀얼 폴리게이트 구조에서 CMOS 트랜지스터에 미치는 플로린 효과)

  • Choi, Deuk-Sung;Jeong, Seung-Hyun;Choi, Kang-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.177-184
    • /
    • 2014
  • In chemical vapor deposition(CVD) tungsten silicide(WSix) dual poly gate(DPG) scheme, we observed the fluorine effects on gate oxide using the electrical and physical measurements. It is found that in fluorine-rich WSix NMOS transistors, the gate thickness decreases as gate length is reduced, and it intensifies the roll-off properties of transistor. This is because the fluorine diffuses laterally from WSix to the gate sidewall oxide in addition to its vertical diffusion to the gate oxide during gate re-oxidation process. When the channel length is very small, the gate oxide thickness is further reduced due to a relative increase of the lateral diffusion than the vertical diffusion. In PMOS transistors, it is observed that boron of background dopoing in $p^+$ poly retards fluorine diffusion into the gate oxide. Thus, it is suppressed the fluorine effects on gate oxide thickness with the channel length dependency.

Simulations Analysis of Proposed Structure Characteristics in Shallow Trench Isolation for VLSI (고집적을 위한 얕은 트랜치 격리에서 제안한 구조의 특성 모의 분석)

  • Lee, YongJae
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.3
    • /
    • pp.27-32
    • /
    • 2014
  • In this paper, We are going to propose the novel structure with improved behavior than the conventional vertical structure for VLSI CMOS circuits. For this, the proposed structure is the moat shape for STI. We want to analysis the characteristics of simulations about the electron concentration distribution, oxide layer shape of hot electron stress, potential flux and electric field flux, electric field fo themal damage and current-voltage characteristics in devices. Physically based models are the ambient and stress bias conditions of TCAD tool. As a analysis results, shallow trench structure were trended to be electric functions of passive as device dimensions shrink. The electrical characteristics influence of proposed STI structures on the transistor applications become stronger the potential difference electric field and saturation threshold voltage, are decreased the stress effects of active region. The fabricated device of based on analysis results data were the almost same characteristics of simulation results data.

Design of Temperature-Compensated Power-Up Detector (온도 변화에 무관한 출력 특성을 갖는 파워-업 검출기의 설계)

  • Ko, Tai-Young;Jun, Young-Hyun;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, a temperature variation-insensitive power-up detector for use in analog and digital integrated systems has been proposed. To provide temperature-insensitive characteristic, nMOS and pMOS voltage dividers in the proposed power-up detector are made to have zero temperature coefficient by exploiting the fact that the effective gate-source voltage of a MOS transistor can result in mutual compensation of mobility and threshold voltage for temperature independency. Comparison results using a 68-nm CMOS process indicate that the proposed power-up detector achieves as small as 4 mV voltage variation at 1.0 V power-up voltage over a temperature range of $-30^{\circ}C$ to $90^{\circ}C$, resulting in 92.6% reduction on power-up voltage variations over conventional power-up detectors.

Si-core/SiGe-shell channel nanowire FET for sub-10-nm logic technology in the THz regime

  • Yu, Eunseon;Son, Baegmo;Kam, Byungmin;Joh, Yong Sang;Park, Sangjoon;Lee, Won-Jun;Jung, Jongwan;Cho, Seongjae
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.829-837
    • /
    • 2019
  • The p-type nanowire field-effect transistor (FET) with a SiGe shell channel on a Si core is optimally designed and characterized using in-depth technology computer-aided design (TCAD) with quantum models for sub-10-nm advanced logic technology. SiGe is adopted as the material for the ultrathin shell channel owing to its two primary merits of high hole mobility and strong Si compatibility. The SiGe shell can effectively confine the hole because of the large valence-band offset (VBO) between the Si core and the SiGe channel arranged in the radial direction. The proposed device is optimized in terms of the Ge shell channel thickness, Ge fraction in the SiGe channel, and the channel length (Lg) by examining a set of primary DC and AC parameters. The cutoff frequency (fT) and maximum oscillation frequency (fmax) of the proposed device were determined to be 440.0 and 753.9 GHz when Lg is 5 nm, respectively, with an intrinsic delay time (τ) of 3.14 ps. The proposed SiGe-shell channel p-type nanowire FET has demonstrated a strong potential for low-power and high-speed applications in 10-nm-and-beyond complementary metal-oxide-semiconductor (CMOS) technology.

A Fully-Integrated DC-DC Buck Converter Using A New Gate Driver (새로운 게이트 드라이버를 이용한 완전 집적화된 DC-DC 벅 컨버터)

  • Ahn, Young-Kook;Jeon, In-Ho;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This paper presents a fully-integrated buck converter equipped with packaging inductors. These inductors include parasitic inductances of the bonding wires and lead frames in the package. They have significantly better Q factors than the best on-chip inductors implemented on silicon. This paper also proposes a low-swing gate driver for efficient regulation of high-frequency switching converters. The low-swing driver uses the voltage drop of a diode-connect transistor. The proposed converter is designed and fabricated using a $0.13-{\mu}m$ CMOS process. The fully-integrated buck converter achieves 68.7% and 86.6% efficiency for 3.3 V/2.0 V and 2.8 V/2.3 V conversions, respectively.

Phase Error Accumulation Methodology for On-chip Cell Characterization (온 칩 셀 특성을 위한 위상 오차 축적 기법)

  • Kang, Chang-Soo;Im, In-Ho
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.6-11
    • /
    • 2011
  • This paper describes the design of new method of propagation delay measurement in micro and nanostructures during characterization of ASIC standard library cell. Providing more accuracy timing information about library cell (NOR, AND, XOR, etc.) to the design team we can improve a quality of timing analysis inside of ASIC design flow process. Also, this information could be very useful for semiconductor foundry team to make correction in technology process. By comparison of the propagation delay in the CMOS element and result of analog SPICE simulation, we can make assumptions about accuracy and quality of the transistor's parameters. Physical implementation of phase error accumulation method(PHEAM) can be easy integrated at the same chip as close as possible to the device under test(DUT). It was implemented as digital IP core for semiconductor manufacturing process($0.11{\mu}m$, GL130SB). Specialized method helps to observe the propagation time delay in one element of the standard-cell library with up-to picoseconds accuracy and less. Thus, the special useful solutions for VLSI schematic-to-parameters extraction (STPE), basic cell layout verification, design simulation and verification are announced.

Design of Multiband Octa-Phase LC VCO for SDR (SDR을 위한 다중밴드 Octa-Phase LC 전압제어 발진기 설계)

  • Lee, Sang-Ho;Han, Byung-Ki;Lee, Jae-Hyuk;Kim, Hyeong-Dong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.7-11
    • /
    • 2007
  • This paper presents a multiband octa-phase LC VCO for SDR receiver. Four identical LC VCOs are connected by using series coupling transistor to obtain the octa-phase signal and low phase noise characteristic. For a multiband application, a band tuning circuit that consists of a switch capacitor circuit and two MOS varactors is proposed. As the MOS switch is on/off state, the frequency range will be varied. In addition, two varactors make the VCO be immune to process variation of the oscillation frequency. The VCO is designed in 0.18-um CMOS technology, consumes 12mA current from 1.8V supply voltage and operates with a frequency band from 885MHz to 1.342GHz (41% tuning range). As driving sub-harmonic mixer, the proposed VCO covers 3 standards(CDMA 2000 1x, WCDMA, WiBro). The measured phase noise is -105dBc@100kHz, -115dBc@1MHz, -130dBc@10MHz for CDMA 2000 1x, WCDMA, WiBro respectively.

A Reconfigurable Analog Front-end Integrated Circuit for Medical Ultrasound Imaging Systems (초음파 의료 영상 시스템을 위한 재구성 가능한 아날로그 집적회로)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.66-71
    • /
    • 2014
  • This paper presents an analog front-end integrated circuit (IC) for medical ultrasound imaging systems using standard $0.18-{\mu}m$ CMOS process. The proposed front-end circuit includes the transmit part which consists of 15-V high-voltage pulser operating at 2.6 MHz, and the receive part which consists of switch and a low-power low-noise preamplifier. Depending on the operation mode, the output driver in the transmit pulser can be reconfigured as the switch in the receive path and thus the area of the overall front-end IC is reduced by over 70% in comparison to previous work. The designed single-channel front-end prototype consumes less than $0.045mm^2$ of core area and can be utilized as a key building block in highly-integrated multi-array ultrasound medical imaging systems.

Design of Multi-Band Low Noise Amplifier Using Switching Transistors for 2.4/3.5/5.2 GHz Band (스위칭 트랜지스터를 이용하여 2.4/3.5/5.2 GHz에서 동작하는 다중 대역 저잡음 증폭기 설계)

  • Ahn, Young-Bin;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.214-219
    • /
    • 2011
  • This paper presents a multi-band low noise amplifier(LNA) with switching operation for 2.4, 3.5 and 5.2 GHz bands using CMOS 0.18 um technology. The proposed circuit uses switching transistors to achieve the input and output matching for multi-band. By using the switching transistors, we can adjust the transconductance, gate inductance and gatesource capacitance at input stage and total output capacitance at output stage. The proposed LNA exhibits gain of 14.2, 12 and 11 dB and noise figure(NF) of 3, 2.9 and 2.8 dB for 2.4, 3.5 and 5.2 GHz, respectively.