Browse > Article
http://dx.doi.org/10.4218/etrij.2018-0281

Si-core/SiGe-shell channel nanowire FET for sub-10-nm logic technology in the THz regime  

Yu, Eunseon (Department of Electrical and Computer Engineering, Purdue University)
Son, Baegmo (Wonik IPS)
Kam, Byungmin (Wonik IPS)
Joh, Yong Sang (Wonik IPS)
Park, Sangjoon (Wonik IPS)
Lee, Won-Jun (Department of Nanotechnology and Advanced Materials Engineering, Sejong University)
Jung, Jongwan (Department of Nanotechnology and Advanced Materials Engineering, Sejong University)
Cho, Seongjae (Department of Electronics Engineering and the Graduate School of IT Convergence Engineering, Gachon University)
Publication Information
ETRI Journal / v.41, no.6, 2019 , pp. 829-837 More about this Journal
Abstract
The p-type nanowire field-effect transistor (FET) with a SiGe shell channel on a Si core is optimally designed and characterized using in-depth technology computer-aided design (TCAD) with quantum models for sub-10-nm advanced logic technology. SiGe is adopted as the material for the ultrathin shell channel owing to its two primary merits of high hole mobility and strong Si compatibility. The SiGe shell can effectively confine the hole because of the large valence-band offset (VBO) between the Si core and the SiGe channel arranged in the radial direction. The proposed device is optimized in terms of the Ge shell channel thickness, Ge fraction in the SiGe channel, and the channel length (Lg) by examining a set of primary DC and AC parameters. The cutoff frequency (fT) and maximum oscillation frequency (fmax) of the proposed device were determined to be 440.0 and 753.9 GHz when Lg is 5 nm, respectively, with an intrinsic delay time (τ) of 3.14 ps. The proposed SiGe-shell channel p-type nanowire FET has demonstrated a strong potential for low-power and high-speed applications in 10-nm-and-beyond complementary metal-oxide-semiconductor (CMOS) technology.
Keywords
CMOS technology; high hole mobility; low-power high-speed operation; nanowire FET; SiGe shell channel; sub-10-nm logic technology; valence-band offset;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Yu et al., Ultra-thin SiGe shell channel p-type FinFET on bulk Si for Sub-10-nm technology nodes, IEEE Trans. Electron Devices 65 (2018), no. 4, 1290-1297.   DOI
2 G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, A new recombination model for device simulation including tunneling, IEEE Trans. Electron Devices 39 (1992), no. 2, 331-338.   DOI
3 Silvaco, ATLAS User's Manual, Santa Clara, CA, USA, 2016.
4 T. Tezuka, N. Sugiyama, and S. Takagi, Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction, Appl. Phys. Lett. 79 (2001), no. 12, 1795-1800.   DOI
5 S. Nakaharai et al., Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge condensation technique, Appl. Phys. Lett. 83 (2003), no. 17, 3516-3518.   DOI
6 T. Irisawa et al., Ge wire MOSFETs fabricated by three-dimensional Ge condensation technique, Thin Solid Films 517 (2008), no. 1, 167-169.   DOI
7 A. Asenov, Random dopant induced threshold voltage lowering and fluctuations in Sub-0.1 m MOSFET's: A 3-D "atomistic" simulation study, IEEE Trans. Electron Devices 45 (1998), no. 12, 2505-2513.   DOI
8 F. A. Trumbore, Solid solubilities of impurity elements in germanium and silicon, Bell Syst. Tech. J. 39 (1960), 205-233.   DOI
9 S. M. Sze and K. K. Ng, Physics of semiconductor devices, New York, USA, Wiley, 2006, pp. 68.
10 B.-G. Park, S. W. Hwang, and Y. J. Park, Nanoelectronic devices, Singapore, Pan Stanford, 2012.
11 J. Ha et al., Investigation and optimization of double-gate MPI 1T DRAM with gate-induced drain leakage operation, J. Semicond. Technol. Sci. 19 (2019), no. 2, 165-171.   DOI
12 J. Lee, Y. Kim, and S. Cho, Design of poly-si junctionless finchannel FET with quantum-mechanical drift-diffusion models for sub-10-nm technology nodes, IEEE Trans. Electron Devices. 12 (2016), no. 6, 847-853.
13 S. Takagi, M. Takayanagi, and A. Toriumi, Characterization of Inversion-Layer Capacitance of Holes in Si MOSFET's, IEEE Trans. Electron Devices 46 (1999), no. 7, 1446-1450.   DOI
14 C.-J. Tang, T. Wang, and C.-S. Chang, Study of quantum confinement effects on hole mobility in silicon and germanium double gate metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett. 95 (2009), no. 14, 142103:1-3.
15 Y. Liang et al., Critical thickness enhancement of epitaxial SiGe films grown on small structures, J. Appl. Phys. 97 (2005), no. 4, 043519:1-7.
16 J. M. Hartmann, A. Abbadie, and S. Favier, Critical thickness for plastic relaxation of SiGe on Si(001) revisited, J. Appl. Phys. 110, (2011), no. 8, 083529:1-8.
17 G. Eneman et al., Layout scaling of $Si_{1-x}Ge_x$-channel pFETs, IEEE Trans. Electron Devices 58 (2011), no. 8, 2544-2550.   DOI
18 T. Krishnamohan et al., High-mobility ultrathin strained Ge MOSFETs on bulk and SOI with low band-to-band tunneling leakage: experiments, IEEE Trans. Electron Devices 53 (2006), no. 5, 990-999.   DOI
19 D. Kim, T. Krishnamohan, and K. C. Saraswat, Performance Evaluation of III-V Double-Gate n-MOSFETs, in IEEE Device Research Conf. (DRC), Santa Barbara, CA, USA, June 2008, pp. 67-68.
20 K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, I-MOS: A novel semiconductor device with a subthreshold slope lower than kT/q, in IEEE Int. Electron Dev. Meeting (IEDM), San Francisco, CA, USA, Dec. 2002, pp. 289-292.
21 D.-I. Bae et al., A novel tensile Si (n) and compressive SiGe (p) dual-channel CMOS FinFET co-integration scheme for 5nm logic applications beyond, in IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, USA, Dec. 2016, pp. 28.1:1-4.
22 T. Krishnamohan et al., Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and << 60mV/dec subthreshold slope, in IEEE Int. Electron Dev. Meeting (IEDM), San Francisco, CA, USA, Dec. 2008, pp. 1-3.
23 M. Shi et al., Investigation on phase-change synapse devices for more gradual switching, J. Semicond. Technol. Sci. 19 (2019), no. 1, 8-17.   DOI
24 J. Lee et al., Fabrication methods for nanowire tunnel fet with locally concentrated silicon-germanium channel, J. Semicond. Technol. Sci. 1 (2019), no. 1, 18-23.
25 C. Clays and E. Simoen, Germanium-based technologies, Elsevier, Amsterdam, Netherlands, 2007.
26 Y. Taur, CMOS design near the limit of scaling, IBM J. Res. Dev. 46 (2002), no. 2/3, 213-223.   DOI
27 International Technology Roadmap for Semiconductors (ITRS), 2013, [online] Available: http://www.itrs2.net.
28 D. V. Lang et al., Measurement of the band gap of $Ge_xSi_{1-x}/Si$ strained-layer heterostructures, Appl. Phys. Lett. 47 (1985), no. 12, 1333-1335.   DOI
29 R. Braunstein, A. R. Moore, and F. Herman, Intrinsic optical absorption in germanium-silicon alloys, Phys. Rev. 109 (1985), no. 3, 695-710.   DOI
30 W. Lu et al., One-dimensional hole gas in germanium/silicon nanowire heterostructures, Proc. Nat. Acad. Sci. USA 102 (2005), no. 29, 10046-10051.   DOI
31 B. Ho et al., Segmented-channel Si1-xGex/Si pMOSFET for improved Ion and reduced variability, in Symp. VLSI Technol., Honolulu, HI, USA, June 2012, pp. 167-168.
32 J. Xiang et al., Ge/Si nanowire heterostructures as high-performance field-effect transistors, Nature 441 (2006), no. 7092, 489-493.   DOI
33 H. M. Fahad and M. M. Hussain, Are nanotube architectures more advantageous than nanowire architectures for field effect transistors?, Sci. Rep. 2 (2012), no. 475, 1-7.
34 S. Krishnan et al., A manufacturable dual channel (Si and SiGe) high-k metal gate CMOS technology with multiple oxides for high performance and low power applications, in IEEE Int. Electron Devices Meeting (IEDM), Washington, DC, USA, Dec. 2011, pp. 28.1:1-4.
35 B.-M. Nguyen et al., Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires, Nano Lett. 15 (2015), no. 11, 7258-7264.   DOI
36 Y. H. Wu et al., The effect of native oxide on epitaxial SiGe from deposited amorphous Ge on Si, Appl. Phys. Lett. 74 (1999), no. 528, 528-530.   DOI
37 S. A. Dayeh et al., Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires, Nano Lett. 13 (2013), no. 5, 1869-1876.   DOI
38 L. J. Lauhon et al., Epitaxial core-shell and core-multishell nanowire heterostructures, Nature 420 (2002), no. 6911, 57-61.   DOI
39 T. K. Kempa et al., Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices, J. Am. Chem. Soc. 135 (2013), no. 49, 18354-18357.   DOI
40 B.-I. Moshit and P. Fernando, A Route to High-Quality Crystalline Coaxial Core/Multishell Ge@Si(GeSi)(n) and Si@(GeSi)(n) Nanowire Heterostructures, Adv. Mater. 22 (2010), no. 8, 902-906.   DOI
41 J. Franco et al., On the impact of the Si passivation layer thickness on the NBTI of nanoscaled $Si_{0.45}Ge_{0.55}$ pMOSFETs, Microelectron. Eng. 88 (2011), no. 7, 1388-1391.   DOI
42 T. C. Chen et al., The characteristic of $HfO_2$ on strained SiGe, Mater. Sci. Semicond. Process. 8 (2005), no. 1-3, 209-213.   DOI
43 K. Mistry et al., A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging, in IEEE Int. Electron Devices Meeting (IEDM), Washington, DC, USA, Dec. 2007, pp. 247-250.
44 S. Cho et al., Analyses on small-signal parameters and radio-frequency modeling of gate-all-around tunneling field-effect transistors, IEEE Trans. Electron Devices 58 (2011), no. 12, 4164-4171.   DOI
45 E. Yu and S. Cho, Design and analysis of nanowire p-type MOSFET coaxially having silicon core and germanium peripheral channel, Jpn. J. Appl. Phys. 55 (2016), no. 11, 114001:1-8.