CMOS 소자가 서브마이크론($0.1\;{\mu}m$) 이하로 스케일다운 되면서 단채널 효과(short channel effect), 게이트 산화막(gate oxide)의 누설전류(leakage current)의 증가와 높은 직렬저항(series resistance) 등의 문제가 발생한다. CMOS 소자의 구동전류(drive current)를 높이고, 단채널 효과를 줄이기 위한 가장 효율적인 방법은 소스 및 드레인의 얕은 접합(shallow junction) 형성과 직렬 저항을 줄이는 것이다. 플라즈마 도핑 방법은 플라즈마 밀도 컨트롤, 주입 바이어스 전압 조절 등을 통해 저 에너지 이온주입법보다 기판 손상 및 표면 결함의 생성을 억제하면서 고농도로 얕은 접합을 형성할 수 있다. 그리고 얕은 접합을 형성하기 위해 주입된 불순물의 활성화와 확산을 위해 후속 열처리 공정은 높은 온도에서 짧은 시간 열처리하여 불순물 물질의 활성화를 높여주면서 열처리로 인한 접합 깊이를 얕게 해야 한다. 그러나 접합의 깊이가 줄어듦에 따라서 소스 및 드레인의 표면 저항(sheet resistance)과 접촉저항(contact resistance)이 급격하게 증가하는 문제점이 있다. 이러한 표면저항과 접촉저항을 줄이기 위한 방안으로 실리사이드 박막(silicide thin film)을 형성하는 방법이 사용되고 있다. 본 논문에서는 (100) p-type 웨이퍼 He(90 %) 가스로 희석된 $PH_3$(10 %) 가스를 사용하여 플라즈마 도핑을 실시하였다. 10 mTorr의 압력에서 200 W RF 파워를 인가하여 플라즈마를 생성하였고 도핑은 바이어스 전압 -1 kV에서 60 초 동안 실시하였다. 얕은 접합을 형성하기 위한 불순물의 활성화는 ArF(193 nm) excimer laser를 통해 $460\;mJ/cm^2$의 에니지로 열처리를 실시하였다. 그리고 낮은 접촉비저항과 표면저항을 얻기 위해 metal sputter를 통해 TiN/Ti를 $800/400\;{\AA}$ 증착하고 metal RTP를 사용하여 실리사이드 형성 온도를 $650{\sim}800^{\circ}C$까지 60 초 동안 열처리를 실시하여 $TiSi_2$ 박막을 형성하였다. 그리고 $TiSi_2$의 두께를 측정하기 위해 TEM(Transmission Electron Microscopy)을 측정하였다. 화학적 결합상태를 분석하기 위해 XPS(X-ray photoelectronic)와 XRD(X-ray diffraction)를 측정하였다. 접촉비저항, 접촉저항과 표면저항을 분석하기 위해 TLM(Transfer Length Method) 패턴을 제작하여 I-V 특성을 측정하였다. TEM 측정결과 $TiSi_2$의 두께는 약 $580{\AA}$ 정도이고 morphology는 안정적이고 실리사이드 집괴 현상은 발견되지 않았다. XPS와 XRD 분석결과 실리사이드 형성 온도가 $700^{\circ}C$에서 C54 형태의 $TiSi_2$ 박막이 형성되었고 가장 낮은 접촉비저항과 접촉저항 값을 가진다.
본 논문에서는 자동차 전장용 Power IC, 디스플레이 구동 칩, CMOS 이미지 센서 등의 응용분야에서 필요로 하는 동기식 256-bit OTP(one-time programmable) 메모리를 설계하였다. 동기식 256-bit OTP 메모리의 셀은 고전압 차단 트랜지스터 없이 안티퓨즈인 NMOS 커패시터와 액세스 트랜지스터로 구성되어 있다. 기존의 3종류의 전원 전압을 사용하는 대신 로직 전원 전압인 VDD(=1.5V)와 외부 프로그램 전압인 VPPE(=5.5V)를 사용하므로 부가적인 차단 트랜지스터의 게이트 바이어스 전압 회로를 제거하였다. 그리고 프로그램시 전류 제한 없이 전압 구동을 하는 경우 안티퓨즈의 ON 저항 값과 공정 변동에 따라 프로그램 할 셀의 부하 전류가 증가한다. 그러므로 프로그램 전압은 VPP 전원 선에서의 저항성 전압 감소로 인해 상대적으로 증가하는 문제가 있다. 그래서 본 논문에서는 전압 구동 대신 전류 구동방식을 사용하여 OTP 셀을 프로그램 할 때 일정한 부하전류가 흐르게 한다. 그래서 웨이퍼 측정 결과 VPPE 전압은 5.9V에서 5.5V로 0.4V 정도 낮출 수 있도록 하였다. 또한 기존의 전류 감지 증폭기 대신 Clocked 인버터를 사용한 감지 증폭기를 사용하여 회로를 단순화시켰다. 동기식 256-bit OTP IP는 매그나칩 반도체 $0.13{\mu}m$ 공정을 이용하여 설계하였으며, 레이아웃 면적은 $298.4{\times}3.14{\mu}m2$이다.
In this report, the results of a systematic study on the effects of polycrystalline silicon gate depletion on the reliability characteristics of metal-oxide semiconductor field-effect transistor (MOSFET) devices were discussed. The devices were fabricated using standard complimentary metal-oxide semiconductor (CMOS) processes, wherein phosphorus ion implantation with implant doses varying from $10^{13}$ to $5{\times}10^{15}cm^{-2}$ was performed to dope the polycrystalline silicon gate layer. For implant doses of $10^{14}/cm^2$ or less, the threshold voltage was increased with the formation of a depletion layer in the polycrystalline silicon gate layer. The gate-depletion effect was more pronounced for shorter channel lengths, like the narrow-width effect, which indicated that the gate-depletion effect could be used to solve the short-channel effect. In addition, the hot-carrier effects were significantly reduced for implant doses of $10^{14}/cm^2$ or less, which was attributed to the decreased gate current under the gate-depletion effects.
본 논문에서는 H.264/AVC 인코더의 성능 향상을 위해 다중 참조 프레임 기법과 묵시적 가중 예측 기법을 이용하고 낮은 외부 메모리 접근율을 위해 이전 참조 프레임 데이터를 재사용하는 인터 예측기 하드웨어 구조를 제안한다. 참조 소프트웨어JM16.0과 비교하여 참조 프레임 접근율이 약 24%만큼 감소하고 참조 영역 메모리가 약 46%만큼 감소하였다. 통합 구조는 Verilog HDL로 설계되고 Magnachip 0.18um공정으로 합성한 결과 게이트 수는 약 2,061k 이고 91Mhz로 동작한다.
RF 채널 분포효과를 위한 전압 종속 외부 게이트 커패시턴스가 사용된 High resistivity(HR) silicon-on-insulator(SOI) RF accumulation-mode MOS 버랙터의 대신호 모델이 새롭게 개발되었다. 이 모델의 전압 종속 파라미터들은 정확한 S-파라미터 optimization을 사용하여 추출되었고, 이를 피팅하여 empirical 모델 방정식을 구축하였다. 이러한 새로운 대신호 RF 모델은 넓은 전압영역에서 측정된 Y11-파라미터 데이터와 20 GHz까지 잘 일치함으로써 정확도가 검증되었다.
본 연구에서는 게이트 finger수가 증가될수록 드레인 전류의 증가율과 차단주파수가 감소되는 wide width effect를 관찰하였으며, 이 현상을 모델링하기 위하여 기존 BSIM3v3 RF 모델에 finger수에 무관한 외부 소스 저항을 새로 첨가한 개선된 SPICE MOSFET RF 모델을 개발하였다. 이러한 모델로 시뮬레이션된 Nf 종속 드레인 전류와 차단주파수는 기존 BSIM3v3 RF모델보다 $0.13{\mu}m$ multi-finger MOSFET의 측정데이터와 더 잘 일치하였으며, 이는 개선된 RF 모델의 정확도를 증명한다.
In this work, we have designed a fully integrated 2.4GHz LC-tuned voltage-controlled oscillator (VCO) with multiple tuning inputs for a $0.25-{\mu}m$ standard CMOS Process. The design of voltage-controlled oscillator is based on an LC-resonator with a spiral inductor of octagonal type and pMOS-varactors. Only two metal layer have been used in the designed inductor. The frequency tuning is achieved by using parallel pMOS transistors as varactors and back-gate tuned pMOS transistors in an active region. Coarse tuning is achieved by using 3-bit pMOS-varactors and fine tuning is performed by using back-gate tuned pMOS transistors in the active region. When 3-bit digital and analog inputs are applied to the designed circuits, voltage-controlled oscillator shows the tuning feature of frequency range between 2.3 GHz and 2.64 GHz. At the power supply voltage of 2.5 V, phase noise is -128dBc/Hz at 3MHz offset from the carrier, Total power dissipation is 7.5 mW.
In this work, we have designed a fully integrated 2.4GHz LC-tuned voltage-controlled oscillator (VCO) with multiple tuning inputs for a 0.25-$\mu\textrm{m}$ standard CMOS process. The design of voltage-controlled oscillator is based on an LC-resonator with a spiral inductor of octagonal type and pMOS-varactors. Only two metal layer have been used in the designed inductor. The frequency tuning is achieved by using parallel pMOS transistors as varactors and back-gate tuned pMOS transistors in an active region. Coarse tuning is achieved by using 3-bit pMOS-varactors and fine tuning is performed by using back-gate tuned pMOS transistors in the active region. When 3-bit digital and analog inputs are applied to the designed circuits, voltage-controlled oscillator shows the tuning feature of frequency range between 2.3 GHz and 2.64 GHz. At the power supply voltage of 2.5 V, phase noise is -128dBc/Hz at 3MHz offset from the carrier. Total power dissipation is 7.5 mW.
이 논문은 3D 순차적 CMOS 인버터 회로의 전기적 상호작용을 고려한 시뮬레이션을 제시하고자 한다. 상층 NMOS는 BSIM-IMG, 하층 PMOS에는 LETI-UTSOI 모델을 사용하여 전기적 상호작용이 잘 반영되는지 TCAD 데이터와 SPICE 데이터를 비교하였다. 트랜지스터 간의 높이가 작을 때 하층 게이트의 전압의 변화에 따라 상층 전류-전압 특성에 전기적 상호작용이 잘 반영되는 것을 확인하였다.
변환 블록은 영상 압축에서 데이터를 공간적 영역에서 주파수 영역으로 변환해줌으로써 압축의 효율성을 높이는 역할을 수행한다. 본 논문에서는 고성능 HEVC를 위한 4개의 TU 모드($4{\times}4$, $8{\times}8$, $16{\times}16$, $32{\times}32$)를 지원하는 변환 블록 하드웨어 구조를 제안한다. 제안하는 변환 블록의 하드웨어 구조는 공통 연산기를 사용하여 각 TU 모드에 맞는 행렬 계수들 간의 연산을 수행한다. 또한 병렬적인 구조로 설계하여 $4{\times}4$, $8{\times}8$, $16{\times}16$, $32{\times}32$ 크기 TU 모드의 행렬 연산을 처리하는 사이클수가 35cycle로 동일하게 처리된다. TSMC 180nm CMOS 공정 라이브러리를 통해 합성한 결과 $4k(3840{\times}2160)@30Hz$의 영상을 기준으로 최대 동작주파수는 400MHz이고 총 게이트 수는 159k이며, 10-Gpels/cycle의 처리량을 갖는다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.