• Title/Summary/Keyword: Boundary blow-up

Search Result 33, Processing Time 0.012 seconds

EXISTENCE OF SOLUTIONS FOR BOUNDARY BLOW-UP QUASILINEAR ELLIPTIC SYSTEMS

  • Miao, Qing;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.625-637
    • /
    • 2010
  • In this paper, we are concerned with the quasilinear elliptic systems with boundary blow-up conditions in a smooth bounded domain. Using the method of lower and upper solutions, we prove the sufficient conditions for the existence of the positive solution. Our main results are new and extend the results in [Mingxin Wang, Lei Wei, Existence and boundary blow-up rates of solutions for boundary blow-up elliptic systems, Nonlinear Analysis(In Press)].

A PARABOLIC SYSTEM WITH NONLOCAL BOUNDARY CONDITIONS AND NONLOCAL SOURCES

  • Gao, Wenjie;Han, Yuzhu
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.629-644
    • /
    • 2012
  • In this work, the authors study the blow-up properties of solutions to a parabolic system with nonlocal boundary conditions and nonlocal sources. Conditions for the existence of global or blow-up solutions are given. Global blow-up property and precise blow-up rate estimates are also obtained.

SOME TYPES OF REACTION-DIFFUSION SYSTEMS WITH NONLOCAL BOUNDARY CONDITIONS

  • Han, Yuzhu;Gao, Wenjie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1765-1780
    • /
    • 2013
  • This paper deals with some types of semilinear parabolic systems with localized or nonlocal sources and nonlocal boundary conditions. The authors first derive some global existence and blow-up criteria. And then, for blow-up solutions, they study the global blow-up property as well as the precise blow-up rate estimates, which has been seldom studied until now.

GLOBAL EXISTENCE AND BLOW-UP FOR A DEGENERATE REACTION-DIFFUSION SYSTEM WITH NONLINEAR LOCALIZED SOURCES AND NONLOCAL BOUNDARY CONDITIONS

  • LIANG, FEI
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.27-43
    • /
    • 2016
  • This paper deals with a degenerate parabolic system with coupled nonlinear localized sources subject to weighted nonlocal Dirichlet boundary conditions. We obtain the conditions for global and blow-up solutions. It is interesting to observe that the weight functions for the nonlocal Dirichlet boundary conditions play substantial roles in determining not only whether the solutions are global or blow-up, but also whether the blowing up occurs for any positive initial data or just for large ones. Moreover, we establish the precise blow-up rate.

BLOW UP OF SOLUTIONS TO A SEMILINEAR PARABOLIC SYSTEM WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY

  • Peng, Congming;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1435-1446
    • /
    • 2009
  • In this paper we investigate the blow up properties of the positive solutions to a semi linear parabolic system with coupled nonlocal sources $u_t={\Delta}u+k_1{\int}_{\Omega}u^{\alpha}(y,t)v^p(y,t)dy,\;v_t={\Delta}_v+k_2{\int}_{\Omega}u^q(y,t)v^{\beta}(y,t)dy$ with non local Dirichlet boundary conditions. We establish the conditions for global and non-global solutions respectively and obtain its blow up set.

  • PDF

A NOTE ON BOUNDARY BLOW-UP PROBLEM OF 𝚫u = up

  • Kim, Seick
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.245-251
    • /
    • 2019
  • Assume that ${\Omega}$ is a bounded domain in ${\mathbb{R}}^n$ with $n{\geq}2$. We study positive solutions to the problem, ${\Delta}u=u^p$ in ${\Omega}$, $u(x){\rightarrow}{\infty}$ as $x{\rightarrow}{\partial}{\Omega}$, where p > 1. Such solutions are called boundary blow-up solutions of ${\Delta}u=u^p$. We show that a boundary blow-up solution exists in any bounded domain if 1 < p < ${\frac{n}{n-2}}$. In particular, when n = 2, there exists a boundary blow-up solution to ${\Delta}u=u^p$ for all $p{\in}(1,{\infty})$. We also prove the uniqueness under the additional assumption that the domain satisfies the condition ${\partial}{\Omega}={\partial}{\bar{\Omega}}$.

NEW BLOW-UP CRITERIA FOR A NONLOCAL REACTION-DIFFUSION SYSTEM

  • Kim, Eun-Seok
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.667-678
    • /
    • 2021
  • Blow-up phenomena for a nonlocal reaction-diffusion system with time-dependent coefficients are investigated under null Dirichlet boundary conditions. Using Kaplan's method with the comparison principle, we establish new blow-up criteria and obtain the upper bounds for the blow-up time of the solution under suitable measure sense in the whole-dimensional space.

BLOW-UP TIME AND BLOW-UP RATE FOR PSEUDO-PARABOLIC EQUATIONS WITH WEIGHTED SOURCE

  • Di, Huafei;Shang, Yadong
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1143-1158
    • /
    • 2020
  • In this paper, we are concerned with the blow-up phenomena for a class of pseudo-parabolic equations with weighted source ut - △u - △ut = a(x)f(u) subject to Dirichlet (or Neumann) boundary conditions in any smooth bounded domain Ω ⊂ ℝn (n ≥ 1). Firstly, we obtain the upper and lower bounds for blow-up time of solutions to these problems. Moreover, we also give the estimates of blow-up rate of solutions under some suitable conditions. Finally, three models are presented to illustrate our main results. In some special cases, we can even get some exact values of blow-up time and blow-up rate.

BLOW-UP AND GLOBAL SOLUTIONS FOR SOME PARABOLIC SYSTEMS UNDER NONLINEAR BOUNDARY CONDITIONS

  • Guo, Limin;Liu, Lishan;Wu, Yonghong;Zou, Yumei
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1017-1029
    • /
    • 2019
  • In this paper, blows-up and global solutions for a class of nonlinear divergence form parabolic equations with the abstract form of $({\varrho}(u))_t$ and time dependent coefficients are considered. The conditions are established for the existence of a solution globally and also the conditions are established for the blow up of the solution at some finite time. Moreover, the lower bound and upper bound of the blow-up time are derived if blow-up occurs.