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BLOW-UP AND GLOBAL SOLUTIONS FOR

SOME PARABOLIC SYSTEMS UNDER NONLINEAR

BOUNDARY CONDITIONS

Limin Guo, Lishan Liu, Yonghong Wu, and Yumei Zou

Abstract. In this paper, blows-up and global solutions for a class of
nonlinear divergence form parabolic equations with the abstract form of
(̺(u))t and time dependent coefficients are considered. The conditions
are established for the existence of a solution globally and also the condi-
tions are established for the blow up of the solution at some finite time.
Moreover, the lower bound and upper bound of the blow-up time are
derived if blow-up occurs.

1. Introduction

In this paper we consider the following parabolic system subject to initial
and boundary value conditions:

(1.1)







































(̺(u))t =

N
∑

i,j=1

(aij(x)uxi)xj + µ(t)h(u), Ω× (0, t⋆),

N
∑

i,j=1

aij(x)uxinj = p(u), (x, t) ∈ ∂Ω× (0, t⋆),

u(x, 0) = u0(x), x ∈ Ω,

where Ω ⊂ R
N (N ≥ 2) is a bounded star-shaped region with smooth boundary

∂Ω, µ(t) is a non-negative function, ̺ is a C2(R+)(R+ = [0,+∞)) function
with ̺′(s) > 0 for all s > 0, h ∈ C(R), p is a nonnegative C(R+) function, µ is
a C1(R+,R+) function, u0 is a nonnegative C1(Ω) function, ∂

∂n is the normal
derivative directed outward on ∂Ω, t⋆ is the blow-up time if blow-up occurs, or
else t⋆ = +∞, and (aij(x))N×N is a differentiable positive definite matrix.

Mathematical investigations of the phenomenon of blow-up of solutions in
initial-boundary-value problems of partial differential equations have received

Received August 7, 2018; Revised February 6, 2019; Accepted March 4, 2019.
2010 Mathematics Subject Classification. 35K55, 35K61.
Key words and phrases. blows-up and global solutions, parabolic equations, nonlinear

boundary conditions, time dependent coefficients, abstract form of (̺(u))t .

c©2019 Korean Mathematical Society

1017



1018 L. GUO, L. LIU, Y. WU, AND Y. ZOU

much attention in the literature. Many results have been achieved on the
bounds for blow-up time in nonlinear parabolic problems. Payne and many
other mathematical researchers have done a lot of work on the blow-up solutions
of parabolic problems and the author obtained a large number of outstanding
achievements, and for more details we refer the reader to [1,3,6,7,9,11–21] and
the references therein.

In [8], Payne and Philippin studied the blow-up solution of the following
equation















ut = ∆u + k(t)f(u), Ω× (0, t⋆),

∂u(x, t)

∂n
= au, (x, t) ∈ ∂Ω× (x, t∗),

u(x, t) = v(x, t) = 0, x ∈ Ω,

where ∆ is the Laplace operator, Ω is a bounded star-shaped region of R3 with
boundary ∂Ω, k(t) is a non-negative function, a is an arbitrary constant, and
∂
∂n is the normal derivative directed outward on ∂Ω.

In [5], Li and Li dealt with the initial-boundary value problem






































ut =

N
∑

i,j=1

(aij(x)uxi)xj + f(u), Ω× (0, t⋆),

N
∑

i,j=1

aij(x)uxinj = g(u), (x, t) ∈ ∂Ω× (0, t⋆),

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a bounded star-shaped region of RN(N ≥ 2) with smooth boundary
∂Ω, n is the unit outward normal on ∂Ω, t⋆ is the blow-up time if blow-up
occurs, or else t⋆ = +∞, and (aij(x))N×N is a differentiable definite matrix.

In [2], Ding and Hu studied the following reaction diffusion equations under
Dirichlet boundary condition











(g(u))t = ∇ · (ρ(|∇u|2)∇u) + k(t)f(u), Ω× (0, t⋆),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, t⋆),

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

where Ω is a bounded domain of RN (N ≥ 2) with smooth boundary ∂Ω. By
construction of some appropriate auxiliary functions and using a first-order
differential inequality technique, the authors established the upper and lower
bounds for the blow-up time when blow-up occurs. Moreover, the authors also
established the condition to ensure that the solution exists globally.

Remark 1.1. Our system of equations is the generalization of the systems of
equations in [4, 8]. If

aij(x) = δij =

{

1, i = j,

0, i 6= j,
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and p(u) = au, ̺(u) = u, then system (1.1) reduces to the corresponding sys-
tem in [8]; if ̺(u) = u, then system (1.1) reduces to the corresponding system in
[4]. Compared with [5], the nonlinear term in our equation has time-dependent
coefficients and the abstract form of (̺(u))t is contained in the parabolic sys-
tems. The conditions are established respectively on the nonlinearities to get
the lower and upper bound of the blow-up solution or the global solution for the
nonlinear divergence form parabolic equation with time dependent coefficients
in the nonlinear boundary conditions.

2. The global existence of solutions

In this section, Ω ⊂ R
N (N ≥ 2) is a bounded star-sharped region with

smooth boundary ∂Ω, and then the conditions are established on the nonlin-
earities to guarantee that u(x, t) exists globally.

Just like the same way the authors introduced functions Φ and G in reference
[2], for any fixed u, we introduce functions φ1 and ℜ as follows:

(2.1) φ1(t) =

∫

Ω

ℜ(u(x, t))dx, t ∈ (0, t⋆), ℜ(s) = 2

∫ s

0

y̺′(y)dy.

In order to get the main results, we first give the following lemma.

Lemma 2.1 ([5]). Let Ω be a bounded star-sharped region in R
N , N ≥ 2. Then

for any nonnegative C1 function w in Ω and real number r > 0, we have
∫

∂Ω

wrdS ≤
N

ρ0

∫

Ω

wrdx+
rd

ρ0

∫

Ω

wr−1|∇w|dx,

where

ρ0 = min
x∈∂Ω

(x · n), d = max
x∈Ω

|x|.

Theorem 2.1. Assume that functions h ∈ C(R+, (−∞, 0]) and p ∈ C(R+,R+)
satisfy

(2.2)
h(x) ≤ −k1x

q, p(x) ≤ k2x
q, x ∈ R

+,

̺′′(s) ≥ 0, s ∈ R
+,

where k1, k2 ≥ 0, q > q > 1, 2q < q + 1. Then the nonnegative solution u(x, t)
of problem (1.1) does not blow up, that is u(x, t) exists for all time t > 0.

Proof. Since (aij(x))N×N is a positive definite matrix, there exists a real num-
ber θ1 > 0 such that for all η ∈ R

n, x ∈ Ω,

(2.3)

N
∑

i,j=1

aij(x)ηiηj ≥ θ1|η|
2.

Differentiating (2.1) and using the divergence theorem, combining (1.1), for all
t ∈ (0, t⋆), we have

φ′
1(t) = 2

∫

Ω

u̺′(u)utdx(2.4)
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= 2

∫

Ω

u





N
∑

i,j=1

(aij(x)uxi)xj + µ(t)h(u)



 dx

= 2

∫

Ω

u

N
∑

i,j=1

(aij(x)uxi)xjdx + 2µ(t)

∫

Ω

uh(u)dx.

= 2

∫

∂Ω

u

N
∑

i,j=1

aij(x)uxinjdS − 2

∫

Ω

N
∑

i,j=1

aij(x)uxiuxjdx

+ 2µ(t)

∫

Ω

uh(u)dx.

≤ 2k2

∫

∂Ω

uq+1dS − 2θ1

∫

Ω

|∇u|2dx− 2µ(t)

∫

Ω

k1u
q+1dx.

By Lemma 2.1, we have

(2.5)

∫

∂Ω

uq+1dS ≤
N

ρ0

∫

Ω

uq+1dx+
(q + 1)d

ρ0

∫

Ω

uq|∇u|dx.

Substituting (2.5) into (2.4), for all t ∈ (0, t⋆), we have

(2.6)

φ′
1(t) ≤

2k2N

ρ0

∫

Ω

uq+1dx+
2k2(q + 1)d

ρ0

∫

Ω

uq|∇u|dx

− 2θ1

∫

Ω

|∇u|2dx− 2k1µ(t)

∫

Ω

uq+1dx.

By Cauchy inequality, we have

(2.7)

∫

Ω

uq|∇u|dx ≤
a1
2

∫

Ω

u2qdx+
1

2a1

∫

Ω

|∇u|2dx.

Choosing a1 = k2(q+1)d
2θ1ρ0

and substituting (2.7) into (2.6), for all t ∈ (0, t⋆), we

have

(2.8) φ′
1(t) ≤

2k2N

ρ0

∫

Ω

uq+1dx+ 2θ1a
2
1

∫

Ω

u2qdx− 2k1µ(t)

∫

Ω

uq+1dx.

By 2q < q + 1, for all ǫ > 0, we have

(2.9)

∫

Ω

u2qdx ≤ (1− γ0)ǫ

∫

Ω

uq+1dx+ γ0ǫ
γ0−1
γ0

∫

Ω

uq+1dx,

where γ0 = q+1−2q
q−q < 1. Substituting (2.9) into (2.8), we have

(2.10) φ′
1(t) ≤ M1

∫

Ω

uq+1 −M2(t)

∫

Ω

uq+1, t ∈ (0, t⋆),

where

M1 =
2k2N

ρ0
+ 2θ1a

2
1γ0ǫ

γ0−1

γ0 > 0, M2(t) = 2k1µ(t)− 2θ1a
2
1(1 − γ0)ǫ > 0
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for ǫ > 0 sufficiently small. By the Hölder inequality, we have

(2.11)
∫

Ω

uq+1dx ≤

(
∫

Ω

uq+1dx

)

q+1
q+1

|Ω|
q−q
q+1 .

Substituting (2.11) into (2.10), for all t ∈ (0, t⋆), we get

φ′
1(t) ≤ M1

(
∫

Ω

uq+1dx

)

q+1
q+1

|Ω|
q−q
q+1 −M2(t)

∫

Ω

uq+1dx

≤ M1

(
∫

Ω

uq+1dx

)

q+1
q+1

(

|Ω|
q−q
q+1 −

M2(t)

M1

(
∫

Ω

uq+1dx

)

q−q
q+1

)

.(2.12)

Integration by parts, by (2.2), we have

ℜ(u) = 2

∫ u

0

y̺′(y)dy =

∫ u

0

̺′(y)dy2

= ̺′(u)u2 −

∫ u

0

̺′′(y)y2dy

≤ ̺′(u)u2.

Using the Hölder inequality, for all t ∈ (0, t⋆), we have

φ1(t) =

∫

Ω

ℜ(u(x, t))dx ≤

∫

Ω

̺′(u)u2dx

≤

(
∫

Ω

uq+1dx

)
2

q+1
(
∫

Ω

(̺′(u))
q+1
q−1 dx

)1− 2
q+1

,(2.13)

and hence,

(2.14)

(
∫

Ω

uq+1dx

)

q−q
q+1

≥ (φ1(t))
q−q
2

(
∫

Ω

(̺′(u))
q+1
q−1 dx

)

(q−q)(1−q)
2(q+1)

.

Substituting (2.14) into (2.13), for all t ∈ (0, t⋆), we get

φ′
1(t) ≤ M1

(
∫

Ω

uq+1dx

)

q+1
q+1



|Ω|
q−q
q+1 −

M2(t)

M1
(φ1(t))

q−q
2

(
∫

Ω

(̺′(u))
q+1
q−1 dx

)

(q−q)(1−q)
2(q+1)



 .(2.15)

From the inequality (2.15), we declare that φ1(t) remains bounded for all time
under the conditions in Theorem 2.1 since M2(t) is a positive C1(R+) function.
In fact, if u(x, t) blows up at finite time t⋆, then

lim
t→t⋆−

M2(t) = M(t⋆), lim
t→t⋆−

φ1(t) = +∞,
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and thus,

lim
t→t⋆−

M2(t)

M1
(φ1(t))

q−q
2

(
∫

Ω

(̺′(u))
q+1
q−1 dx

)

(q−q)(1−q)
2(q+1)

= +∞.

Therefore φ1(t) is unbounded near t⋆ which forces φ′
1(t) ≤ 0 in some interval

[t0, t
⋆). So we have φ1(t) ≤ φ1(t0) in [t0, t

⋆), which implies that φ1(t) is bounded
in [t0, t

⋆), which is a contradiction. The proof of Theorem 2.1 is completed. �

3. Upper bound estimation of t⋆ for blow-up time

In this section, we do not need the assumption that Ω ⊂ R
N is a star-sharped

domain, and we will establish the conditions on the nonlinearities to get the
upper bound of the blow-up solution.

Theorem 3.1. Let u(x, t) be the nonnegative solution of problem (1.1), and
assume that µ ∈ C1(R+,R+), h ∈ C(R+,R+) and p ∈ C(R+,R+) and the

nonnegative and integrable function ̺ ∈ C2(R+,R) satisfy conditions

(3.1)

xh(x) ≥ 2(1 + α)H(x) > 0, xp(x) ≥ 2(1 + β)P (x), x ∈ R
+,

µ′(t) ≥ 0, t ∈ (0, t⋆), µ(0) > 0,

̺′′(s) ≤ 0, s ∈ R
+,

where 0 ≤ α ≤ β, and

H(x) =

∫ x

0

h(s)ds, P (x) =

∫ x

0

p(s)ds.

Moreover, assume that Λ(0) > 0 with

(3.2) Λ(t) = 2

∫

∂Ω

P (u)dS −

∫

Ω

N
∑

i,j=1

aij(x)uxiuxjdx+ 2µ(t)

∫

Ω

F (u)dx.

Then u(x, t) blows up at time t⋆ < T with

T =
1

2α(α+ 1)A
(φ1(0))

−α
,

where φ1(t) is defined by (2.1) and A = Λ(0)(φ1(0))
−(1+α) is a constant.

Proof. Differentiating (2.1), and by the Green formula, for all t ∈ (0, t⋆), fol-
lowing the computations in (2.4), we have

φ′
1(t) ≥ 4(1 + β)

∫

∂Ω

P (u)dS − 2

∫

Ω

N
∑

i,j=1

aij(x)uxiuxjdx

+ 4µ(t)(1 + α)

∫

Ω

H(u)dx

≥ 2



2(1 + β)

∫

∂Ω

P (u)dS −

∫

Ω

N
∑

i,j=1

aij(x)uxiuxjdx(3.3)
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+2µ(t)(1 + α)

∫

Ω

H(u)dx

]

≥ 2(1 + α)Λ(t),

where Λ(t) is as (3.2). Differentiating Λ(t), for all t ∈ (0, t⋆), we have

Λ′(t) = 2

∫

∂Ω

p(u)utdS −

∫

Ω





N
∑

i,j=1

aij(x)uxiuxj





t

dx + 2µ′(t)

∫

Ω

H(u)dx

+ 2µ(t)

∫

Ω

h(u)utdx

= 2

∫

∂Ω

p(u)utdS + 2

∫

Ω

ut

N
∑

i,j=1

(aij(x)uxi)xjdx− 2

∫

∂Ω

p(u)utdS(3.4)

+ 2µ′(t)

∫

Ω

H(u)dx+ 2µ(t)

∫

Ω

h(u)utdx

≥ 2

∫

Ω

ut

N
∑

i,j=1

(aij(x)uxi)xjdx+ 2µ(t)

∫

Ω

h(u)utdx

= 2

∫

Ω

u2
t̺

′(u)dx > 0,

which with Λ(0) > 0 implies Λ(t) > 0 for all t ∈ (0, t⋆). Using (3.3), (3.4) and
Hölder inequality, we have

2

∫

Ω

̺′(u)u2
tdx

∫

Ω

̺′(u)u2dx ≥ 2

(
∫

Ω

u̺′(u)utdx

)2

=
1

2
(φ1(t))

2 ≥ (1 + α)Λ(t)φ′
1(t), t ∈ (0, t⋆).(3.5)

Using integration by parts, we have

(3.6)

ℜ(u) = 2

∫ u

0

y̺′(y)dy =

∫ u

0

̺′(y)dy2

= ̺′(u)u2 −

∫ u

0

̺′′(y)y2dy

≥ ̺′(u)u2.

Hence, by (3.4)-(3.6), for all t ∈ (0, t⋆), we have

(3.7) (1 + α)Λ(t)φ′
1(t) ≤ 2

∫

Ω

̺′(u)u2
tdx

∫

Ω

ℜ(u)dx ≤ Λ′(t)φ1(t),

i.e.,

(3.8)
(

Λ(t)φ
−(1+α)
1

)′

≥ 0.
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Integrating (3.8) and making use of (3.3), we have

1

2(1 + α)
φ′
1(t)(φ1(t))

−(1+α) ≥ Λ(t)(φ1(t))
−(1+α)

≥ Λ(0)(φ1(0))
−(1+α) = A.(3.9)

Integrating (3.9) form 0 to t, we have

(φ1(t))
−α ≤ (φ1(0))

−α − 2α(α+ 1)At.

Clearly, this inequality cannot hold for all time, which implies

φ1(t) → +∞ as t → T =
1

2α(α+ 1)A
(φ1(0))

−α
,

so we conclude that

t⋆ ≤
1

2α(α+ 1)A
(φ1(0))

−α
.

The proof of Theorem 3.1 is completed. �

Remark 3.1. The nonnegative solution u(x, t) of problem (1.1) will blow-up
when α > 0, but the solution will exists globally when α = 0.

4. Blow-up and lower bound estimation of t⋆

In this section, let Ω be a bounded domain in R
3 and also be star-shaped

and convex in two orthogonal directions, we will establish the conditions on
the nonlinearities to get the lower bound of the blow-up solution.

Theorem 4.1. Assume that nonnegative functions h ∈ C(R+,R+), p ∈ (R+,

R
+), µ ∈ C1((0, t⋆),R) and ̺ ∈ C2(R+,R) satisfy

(4.1)

h(x) ≤ x2, p(x) ≤ ax, x ∈ R
+,

µ′(t)

µ(t)
≤ b, t ∈ (0, t⋆),

̺′(s) ≥ m, s ∈ (0,+∞),

where a > 0, 0 ≤ b < ∞,m > 0. And for fixed u, we define

(4.2) φ2(t) = µ2(t)

∫

Ω

ℜ(u(x, t))dx,

where ℜ is defined by (2.1). Then the solution u(x, t) blows up at t⋆, and

∫ ϕ2(t)

ϕ2(0)

dη

c1η + c2η
3
2 + c3η3

≤ t⋆,

where c1, c2 are as in (3.15), (3.16).
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Proof. Since (aij(x))3×3 is a positive definite matrix, there exists a real number
θ > 0 such that for all η ∈ R

n, x ∈ Ω,

(4.3)

3
∑

i,j=1

aij(x)ηiηj ≥ θ|η|2.

Differentiating (4.2), and using (4.1), for all t ∈ (0, t⋆), we have

φ′
2(t) = 2µ(t)µ′(t)

∫

Ω

ℜ(u)dx+ µ2(t)

∫

Ω

̺′(u)uutdx

= 2
µ′(t)

µ(t)
φ2(t) + µ2(t)

∫

Ω

u





3
∑

i,j=1

(aij(x)uxi)xj + µ(t)h(u)



 dx

≤ 2bφ2(t) + µ2(t)

∫

Ω

u

3
∑

i,j=1

(aij(x)uxi)xjdx+ µ3(t)

∫

Ω

uh(u)dx(4.4)

≤ 2bφ2(t) + µ2(t)

∫

Ω

u

3
∑

i,j=1

(aij(x)uxi)xjdx+ µ3(t)

∫

Ω

u3dx.

Using the Green formula and (4.1), (4.2), we get

∫

Ω

u

3
∑

i,j=1

(aij(x)uxi)xjdx =

∫

∂Ω

u

3
∑

i,j=1

(aij(x)uxi)njdS

−

∫

Ω

3
∑

i,j=1

aij(x)uxiuxjdx

=

∫

∂Ω

ug(u)dS −

∫

Ω

3
∑

i,j=1

aij(x)uxiuxjdx

≤ a

∫

∂Ω

u2dS −

∫

Ω

3
∑

i,j=1

aij(x)uxiuxjdx(4.5)

≤ a

∫

∂Ω

u2dS − θ

∫

Ω

|∇u|2dx.

By Lemma 2.1, we have

(4.6)

∫

∂Ω

u2dS ≤
3

ρ0

∫

Ω

u2dx+
2d

ρ0

∫

Ω

u|∇u|dx.

Substituting (4.6) into (4.5), we have

∫

Ω

u

3
∑

i,j=1

(aij(x)uxi)xjdx ≤

∫

∂Ω

u

3
∑

i,j=1

(aij(x)uxi)njdS − θ

∫

Ω

|∇u|2dx

≤ a

∫

∂Ω

u2dS − θ

∫

Ω

|∇u|2dx(4.7)
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≤
3a

ρ0

∫

Ω

u2dx+
2da

ρ0

∫

Ω

u|∇u|dx− θ

∫

Ω

|∇u|2dx.

Substituting (4.7) into (4.4) and using Cauchy inequality, for all t ∈ (0, t⋆), we
have

φ′
2(t) ≤ 2bφ2(t) +

3a

ρ0
µ2(t)

∫

Ω

u2dx +
2da

ρ0
µ2(t)

∫

Ω

u|∇u|dx

− µ2(t)θ

∫

Ω

|∇u|2dx+ µ3(t)

∫

Ω

u3dx.

≤ 2bφ2(t) +
3a

ρ0
µ2(t)

∫

Ω

u2dx +
a1da

ρ0
µ2(t)

∫

Ω

u2dx(4.8)

+
da

ρ0a1
µ2(t)

∫

Ω

|∇u|2dx− µ2(t)θ

∫

Ω

|∇u|2dx+ µ3(t)

∫

Ω

u3dx,

where a1 is to be determined later. By (2.16) of [10], we get a upper bound of
∫

Ω
u3dx, that is

(4.9)
∫

Ω

u3dx ≤ 3−
3
4

{

3

ρ0

∫

Ω

u2dx+

(

d

ρ
+1

)(
∫

Ω

u2dx

)
1
2
(
∫

Ω

|∇u|2dx

)

}

3
2

.

Making use of the inequalities

(a+ b)
3
2 ≤ 2

1
2 (a

3
2 + b

3
2 ), a > 0, b > 0,

ar1br2 ≤ r1a+ r2b, r1 + r2 = 1,

we have

(4.10)
∫

Ω

u3dx ≤ 3−
3
4 2

1
2

[

(

3

ρ0

∫

Ω

u2dx

)
3
2

+

(

d

ρ0
+1

)
3
2
(
∫

Ω

u2dx

)
3
4
(
∫

Ω

|∇u|2dx

)
3
4

]

.

By (4.2), we have

(4.11) ℜ(u) =

∫ u

0

̺′(y)ydy ≥ m

∫ u

0

ydy =
m

2
u2.

Hence, by (4.2), (4.10), (4.11), for all t ∈ (0, t⋆), we have

µ3(t)

∫

Ω

u3dx(4.12)

≤ 3−
3
4 2

1
2µ3(t)

(

3

ρ0

∫

Ω

u2dx

)
3
2

+ 3−
3
4 2

1
2

(

d

ρ0
+ 1

)
3
2

µ3(t)

(
∫

Ω

u2dx

)
3
4
(
∫

Ω

|∇u|2dx

)
3
4

≤ 3−
3
4 2

1
2

(

3

ρ0
µ2(t)

2

m

∫

Ω

ℜ(u)dx

)
3
2

+ 3−
3
4 2

1
2

(

d

ρ0
+ 1

)
3
2
(
∫

Ω

µ2(t)
2

m
ℜ(u)dx

)
3
4
(
∫

Ω

µ2(t)|∇u|2dx

)
3
4
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≤ 3−
3
4 2

1
2

(

6

ρ0m

)
3
2

(φ2(t))
3
2

+ 3−
3
4 2

1
2

(

d

ρ0
+ 1

)
3
2
(

2

m

)
3
4

(ϕ3
2(t))

1
4

(
∫

Ω

µ2(t)|∇u|2dx

)
3
4

≤ 3−
3
4 2

1
2

(

6

ρ0m

)
3
2

(φ2(t))
3
2

+ 3−
3
4 2

1
2

(

d

ρ0
+ 1

)
3
2
(

2

m

)
3
4
(

1

4a32
(ϕ2(t))

3 +
3a2
4

µ2(t)

∫

Ω

|∇u|2dx

)

.

Substituting (4.11), (4.12) into (4.8), for all t ∈ (0, t⋆), we have

(4.13)

φ′
2(t) ≤ 2bφ2(t) +

(

3a

ρ0
+

aa1d

ρ0

)

µ2(t)

∫

Ω

2

m
ℜ(u)dx

+

(

ad

ρ0a1
− θ +

3
1
4 2−

3
4 ( d

ρ0
+ 1)

3
2 a2

m
3
4

)

µ2(t)

∫

Ω

|∇u|2dx

+
4 · 3

3
4

(ρ0m)
3
2

φ
3
2
2 (t) +

3−
3
4 2

13
4

(

d
ρ0

+ 1
)

3
2

a32
φ3
2(t).

Let a1 = 2ad
ρ0θ

, a2 = 2θm
3
4

3
1
4 2

5
4 ( d

ρ0
+1)

3
2
, then

(4.14) φ′
2(t) ≤ c1φ2(t) + c2(φ2(t))

3
2 + c3(φ2(t))

3,

where

(4.15) c1 = 2b+
6a

ρ0m
+

2a1ad

mρ0
, c2 =

4 · 3
3
4

(ρ0m)
3
2

, c3 =
3−

3
4 2

13
4

(

d
ρ0

+ 1
)

3
2

a32
.

Integrating (4.14) from 0 to t, we have
∫ t

0

dφ2(t)

c1φ2(t) + c2φ
3
2
2 (t) + c3φ3

2(t)
≤ t⋆,

i.e.

(4.16)

∫ φ2(t)

φ2(0)

dη

c1η + c2η
3
2 + c3η3

≤ t⋆.

The proof of Theorem 4.1 is completed. �
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