• 제목/요약/키워드: Banach function spaces

검색결과 42건 처리시간 0.021초

COMMUTATORS OF THE MAXIMAL FUNCTIONS ON BANACH FUNCTION SPACES

  • Mujdat Agcayazi;Pu Zhang
    • 대한수학회보
    • /
    • 제60권5호
    • /
    • pp.1391-1408
    • /
    • 2023
  • Let M and M# be Hardy-Littlewood maximal operator and sharp maximal operator, respectively. In this article, we present necessary and sufficient conditions for the boundedness properties for commutator operators [M, b] and [M#, b] in a general context of Banach function spaces when b belongs to BMO(?n) spaces. Some applications of the results on weighted Lebesgue spaces, variable Lebesgue spaces, Orlicz spaces and Musielak-Orlicz spaces are also given.

RELATIONS BETWEEN BANACH FUNCTION ALGEBRAS AND FRÉCHET FUNCTION ALGEBRAS

  • SADY, F.
    • 호남수학학술지
    • /
    • 제20권1호
    • /
    • pp.79-88
    • /
    • 1998
  • In this paper we define the concept of $Fr{\acute{e}}chet$ function algebras on hemicompact spaces. So we show that under certain condition they can be represented as a projective limit of Banach function algebras. Then the class of $Fr{\acute{e}}chet$ Lipschitz algebras on hemicompact metric spaces are defined and their relations with the class of lipschitz algebras on compact metric spaces are studied.

  • PDF

ON THE INTERMEDIATE DIFFERENTIABILITY OF LIPSCHITZ MAPS BETWEEN BANACH SPACES

  • Lee, Choon-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.427-430
    • /
    • 2009
  • In this paper we introduce the intermediate differential of a Lipschitz map from a Banach space to another Banach space and prove that every locally Lipschitz function f defined on an open subset ${\Omega}$ of a superreflexive real Banach space X to a finite dimensional Banach space Y is uniformly intermediate differentiable at every point ${\Omega}/A$, where A is a ${\sigma}$-lower porous set.

  • PDF

STABILITY OF A MIXED QUADRATIC AND ADDITIVE FUNCTIONAL EQUATION IN QUASI-BANACH SPACES

  • Najati, Abbas;Moradlou, Fridoun
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1177-1194
    • /
    • 2009
  • In this paper we establish the general solution of the functional equation f(2x+y)+f(x-2y)=2f(x+y)+2f(x-y)+f(-x)+f(-y) and investigate the Hyers-Ulam-Rassias stability of this equation in quasi-Banach spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

  • PDF

STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN QUASI-BANACH SPACES

  • Najati, Abbas;Moradlou, Fridoun
    • 대한수학회보
    • /
    • 제45권3호
    • /
    • pp.587-600
    • /
    • 2008
  • In this paper we establish the general solution and investigate the Hyers-Ulam-Rassias stability of the following functional equation in quasi-Banach spaces. $${\sum\limits_{{{1{\leq}i<j{\leq}4}\limits_{1{\leq}k<l{\leq}4}}\limits_{k,l{\in}I_{ij}}}\;f(x_i+x_j-x_k-x_l)=2\;\sum\limits_{1{\leq}i<j{\leq}4}}\;f(x_i-x_j)$$ where $I_{ij}$={1, 2, 3, 4}\backslash${i, j} for all $1{\leq}i<j{\leq}4$. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.

SUBADDITIVE SEPARATING MAPS BETWEEN REGULAR BANACH FUNCTION ALGEBRAS

  • Sady, Fereshteh;Estaremi, Yousef
    • 대한수학회보
    • /
    • 제44권4호
    • /
    • pp.753-761
    • /
    • 2007
  • In this note we extend the results of [3] concerning subadditive separating maps from A=C(X) to B=C(Y), for compact Hausdorff spaces X and Y, to the case where A and B are regular Banach function algebras(not necessarily unital) with A satisfying Ditkin#s condition. In particular we describe the general form of these maps and get a result on continuity of separating linear functionals.

EXTENSIONS OF BANACH'S AND KANNAN'S RESULTS IN FUZZY METRIC SPACES

  • Choudhur, Binayak S.;Das, Krishnapada;Das, Pradyut
    • 대한수학회논문집
    • /
    • 제27권2호
    • /
    • pp.265-277
    • /
    • 2012
  • In this paper we establish two common fixed point theorems in fuzzy metric spaces. These theorems are generalisations of the Banach contraction mapping principle and the Kannan's fixed point theorem respectively in fuzzy metric spaces. Our result is also supported by examples.