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A SIMPLE NASH-MOSER IMPLICIT FUNCTION
THEOREM IN WEIGHTED BANACH SPACES

SANGHYUN Cuo! aAND JAaEseo CHort

ABSTRACT. We prove a simplified version of the Nash-Moser im-
plicit function theorem in weighted Banach spaces. We relax the
conditions so that the linearized equation has an approximate in-
verse in different weighted Banach spaces in each recurrence step.

During the last several decades, “Nash-Moser implicit function theo-
rem” helped to resolve several difficult problems of solvability for non-
linear problems, especially, nonlinear partial differential equations [6,
11].

Usually nonlinear partial differential equations (or nonlinear problems
in general) can be transformed into solving the problem :

where ¢ involves the variables z, the unknown function u(z) and its
derivatives up to the order m.

To prove implicit function theorem in infinite dimensional spaces (as
spaces of functions usually are), we first linearize the equation, and then
solve the linear equation so that we get the recursive solutions with ap-
propriate recurrence estimates. The simplest one is known as Picard’s
iterative scheme. However when ¢ involves the derivatives of u up to or-
der m, the Picard’s scheme can not be convergent unless the linearized
equation gets m derivatives (as does elliptic equations). To overcome
this difficulty, Nash [11] and Moser [10] proposed another scheme involv-
ing smoothing operators so that the solution of the linearized equation
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could be estimated inductively in each Sobolev space of order s. Later
Hérmander proposed improved schemes [6, 7, 8] to get optimal results
with respect to the regularity of the solution. However, these schemes
are too complicated and rather frightening for the uninitiated reader.

In [12], Saint Raymond established a simplified version of C*° exis-
tence theorem so that the number of derivatives that are used (provided
that it is finite) does not matter, and this method is useful when we are
working on C*™ category [1, 2, 3]. Raymond used the scheme proposed
by Moser {10] which consists alternately in using Newton’s scheme and
Nash’s smoothing operators closer and closer to the identity :

vk = —(uk)d(ur), Uks1 = up + Spug,

and proved the convergence in C> category. Here S} is a smoothing
operator and ¥(u) is the right inverse of (0¢/0u)(u), that is,

1) ¢ (w)p(u) = 1,

as an operator (I=identity). Also we need an estimate for v = -
P(u)p(u), so called “tame estimates”:

(2) lvls < Cslllp(ullara + lulsralld(ulla),

in Hamilton [4].

In some cases, however, we have to deal with the case that a linearized
equation has right inverse with error terms of second order, c.f.,[1, 2, 3],
or, in each recurrence step, we have to solve a linearized equation with
different weights in each weighted Sobolev space. For example, when we
try to prove an embedding problem of a Cauchy-Riemann structure, the
(approximate) linearized equation becomes an inhomogeneous Cauchy-
Riemann equation on compact pseudoconvex almost complex manifolds
(close to being integrable). In this case, we can not get an elliptic reg-
ularity for the solution up to the boundary. Therefore, we have to use
weighted estimates for 0 [5, 9] with different weights in each Sobolev
space. We then use these weighted estimates for d (as in (5) below) in
each recurrence step in the process of Nash-Moser iteration.

In this paper we prove the Nash-Moser implicit function theorem
in weighted Banach spaces. We relax the conditions in (1) and (2) as
mentioned above. That is, in each k-th recurrence step, ¢(u)+¢'(u)(v) =

0 has a solution with an error that depends on (qu(u)”é? yte for e > 0,
where d is a positive integer, and can be estimated as

(3) 0% < Cot 2 (g1, + lulsrall@(@)I$),
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where {t} is an increasing sequence of positive integers and the norms

1% (or |- Hgk) Il), defined in each recurrence spaces, are Sobolev norms
of order s with weight e~**, where A is a C* function, and E(s) is an
integer depending on s. We state the main theorem as follows.

THEOREM 1. Let {t; }x>¢ be a strictly increasing sequence of positive
integers and suppose that B¥ and B¥, s,k > 0, are families of Banach
spaces with the following properties.

(i) For each fixed k, BX C BF and B¥ C BF if s > t.

(i) If]- ]é’“) and || - ]ng) denote the norms on B% and B¥, respectively,
then

k k) .
|1 2 |15 and ) 2 ) i s > e
(iii) For each fixed k, if BY, = N,,,B% and BY = (., B¥, then
there exists an open set Uy C BX, with
Ur = {u € BE; [u — uoly) < 6},

where d is a positive integer, ug € BY,, and § is a given positive
number. Furthermore, there is a C?-map ¢ : U, — B such
that if u € Uy and v,w € BE_, then

k
[6@I < Cut 4l ), 524
k k
6 () @Iz < Crloly
k k k
16" () (v, w)izd < Calvlsd sy
(when one deals with (nonlinear) partial differential equations of
order m, these estimates classically hold for d > m + n/2).
(iv) There is a positive number € > 0 with the following properties

: for each k, and for all u € Uy, there exists a linear operator
Yr(u) © BE, — By 1(c.a)42q SUCh that

(4) o) ~ ¢ (Wr(u)e(w)|5 < Crlllg@)]IS) +,

and vy, 1= —p(u)P(u) satisfies, for each s, d < s < k+T(e,d) +
2d, the following estimates (so called “tame estimate”) :

(5) o) < CatZ O (o)), + [l o)),
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where E(s) is a polynomial in s, Cs is a constant, and T (¢, d) is
an integer, for example, the smallest integer bigger than or equal
to 3d + 3 + 122+ (94 ¢ 3).

There is g > 1 such that

0(()1+§)(tk—tk+1)l . ng) < , X ng+1) < H(t)k—tk+ll . |gk)7

(1£) (ta—tss te—try1
oy T ) < ) < g0,

where € > 0 is the number in (iv) satisfying (4), and hence
Bt c Bl BF ¢ B*t1, for each s > 0.

For each k, there are smoothing operators Sp : |Jio, B¥ — BE
and Sy : U2, BY — Bk for all & > 1 such that for each real
number s,t, there are a constant Cs ¢ and an integer E(s,t) such
that

1S90 ®) < C, 12095 | P 5 > ¢,

v — Spv|() < C, ot PPty B s < t,

and the similar estimates hold for Sy.

Then there exist an integer B and a small number b > 0 such
that if ||¢(u0)|lg)) < b, for some ug € Uy, then there exists an
element u € Uy such that ¢(u) = 0.

REMARK 2. (a) Since ||¢(u)|lg;) < 1, we may assume that 0 < e < 1.
(b) In many cases, we approximate the non-linear problem up to second
order error terms, and hence € = 1 in these cases.

(c) If X is a smooth bounded function, we can modify A so that 1 <\ <
1+ 3. Let B* be the weighted Sobolev space of order s on a bounded
domain €2 C C™ with weighted norm :

A2 = 3 / D> P aV, f € BE.

lal<s

Then (6) holds with 6y = e.

By choosing a subsequence if necessary, we may assume that the
sequence {t;}r>0 satisfies

(7)

bopt > gtk, k>0,
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and to is sufficiently large. Also, we will use a sequence of real numbers
{0} defined inductively as follows :

(8) O =0, k>1,

and will use the corresponding smoothing operators Sy, . In the sequel,
we set

(10—k)_

0={(1+2¢/3)>1, and 7, =1+ B

 k=1,2,...,5,

and hence 1 < 75 < 74 < 73 < Tp < 711 < T9. For a convenience, we set

120(d + 1)

9) T:=T(e,d) == [3d +3 + (2d + 3)],

where [I'] denotes the smallest integer bigger than or equal to T'. We
first prove the following Lemma which is a crucial step in the proof of
Theorem 1.

LEMMA 3. With the same assumption as in the theorem and with
the smoothing operators Sp, of the remark, the sequences

v = —Pr(ug)d(ur), Urt1r = ur + So, .y Vk,

are well defined if ||¢(u0)||(2?1) < 052" for sufficiently large to ; more
precisely, there exist constants (U;)i>4, and V' (independent of k) such
that for k > 0,

(i) |uk —uols < 6 and [|¢(ur)llsy < 057,
(@) |vklSeps S VO™,

(id)e (14 Juer|E50) < UBEE2(1 + uil B,
d<s<k+T+2d.

Proof. Since the property (i) implies that the sequence ux and vg
are well defined, it is sufficient to prove (@), (¢¢)x and (4ii); inductively.
The property (i)o is true by assumption.

Proof of (i4)x+1- The tame estimate (5) gives, for every s, d < s <
k+ T+ 2d, that

E(s k k
10 ol < Cat? (gl B+ funl ELall b 157 )
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For s = d, and using (i), and (10), we have
(11)
[orl$? < Cat @ (14 Jux = uolff) + [uol§i)) (wi)IS < Voo™,

because tE(d)HTl " is bounded.

Let T be the number defined in (9) and set N = 4(2d + 1). From

the tame estimate (5) and the properties of |]¢(uk)||§k)

Theorem 1, it follows, for d < s < k+ T + 2d, that

stated in (#4¢) of

(01 < Cot?® () IS + lul Sl o) 1)
12 <Ot (Corall+ funl o) + Cald + luslsi)) el 2,

< et (Cora+ Caa(1+ 8+ [uolf)) - (1 + fuel -

The estimate

.b-l,-

(13) 1+ ugl2,0) < 1+ fuol) 08,

holds obviously for j = 0. Moreover, if it holds for some j < k, we
obtain from (7), (13) and (4i7); that

1+1 2d+1 2
(14 fugr |50 < Ur 025521+ Juyl ¥ 00)
2d+1—3

1/4 0
< UT6]+1/ (1+ IUOI(TJ)rzd)eNeHl

—1/4 0 N——
< UT9 / (1+ |U0|§rj)u2d) i+l o

because HN < 92N/ ® and (2d + 1) + 2N/3 < N. Therefore, by induction
forj <k that (13) holds provided ¢y (and hence ¢;) is sufficiently large
so that 65t1/4UT <1.

Thanks to (13), we may write (12) as :

lvklgc) < CTtE(S) (CT+d + Coq(1+6+ |u0|§?l)))

N-1

(14) (14 l“0|T+2d)9 < V10k ;

because tf%;l/‘* is bounded, ford < s < k+T.
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Combining (9), (11), (14) and the properties (vi) in Theorem 1 of the

T1—T2

smoothing operators, the interpolation formula, with O = 077 can
be written as
(15)
k)
lvkl:(}d—i—:}

k k
< lSékvkléd)—f—?a + |k — Sékvklédis
d+3.d d+3,T k
< Chass, dtk(s +3, )92d+3l l( + Cagss Ttk E(3d+3, )93d+3 TI,U |( )
< CharsaVott E(3d+3, d)+E,(d)9~-r2 + Caass, Tvltb(3d+3 T)9;4(2d+2)+N
<Ve. ™,

E(3d+3, T)9—4(2d+2)+N+1—3 nd tb(3d+3 d)+E(d) 6=

because t, T2F73 are boun-

ded. This proves (zz)k+1
Proof of (iii)g+1. Now we want to estimate |uk+1|gﬁ;? in terms of
|vk|§k). Since upi1 = g + Sy, Uk, it follows, for d < s <k +T, that

(k+ k+1
luk+1|s+2d = | k|s+2d) + |Sek+lvkl(9+2d)

< lukls+2d + Cst2d, etb(gﬂd ° 92 1|Vk |(k)

Thus one obtains from (13) that

(s+2d,s s
14+ luk+1| +2d < W tk (o 2d0) + )92d (1 + |uk|s+2d)

2d+1/2
S Usgk.{_l / (1 + |uk|.s+2d)

because tE(°+2d s)J’E(S)H}Hrl, d < s < k+T+2d, is bounded. This proves
(138) k1 w1th constants U, does not depend on k.

Proof of (i)x+1. Since ug — uo = D ;5 S6,4,Vj» VE € [0,1], one can
write, from (6) and (7%)x, that

k+1 k+1
lug + S0, Vk u0|( < Z|Sg]+lvj (k+1)
i<k

< ng jdgtk tk+1tﬁ(3d 3d) Zl ils (J)
i<k

< C'3d,3dV90_t’°“/3tf(3d’3d) Z 0,

i<k

< Cua3qV SO5 4,
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where § = }~. 0;7® < oo is a constant. By choosing o (and hence

t1) sufficiently large so that Cs434V S0, h/4 o 4, we have

funs —uolsy D =1 3 So,vilis <4,
j<k+1

and this is the first part of (¢)g4+1-
By virtue of Taylor’s formula, we can write ;

P(urs1) = d(ur) + ¢ (ur)So,,, vk
1
+ / (1 - t)¢"(uk +tS‘9k+lvk)(S‘9k+lvk? St9k+1vk)dt
0
= ¢ + P2 + @3,

where

$1 = P(ur) + ¢ (ur)vr
= ¢,(uk)(39k+1vk - ’I)k)

1
¢3 = / (1 - t)¢//(uk + tS9k+lvk)(S‘9k+1vk7 Sok+1vk)dt'
0
First, we estimate ¢;. For this, we use the following two estimates ;
- k
(16)  p(ue)llsy < 0,07V =67 and |lp(u) L, < A6).

Note that the second inequality comes from the properties (iii) in The-
orem 1 and (14) with s = T + d. From (4), we have |]¢1||g2+1) =

llp(ur) + ¢’<zzk)<)vk)u<’“+” < Cy(|lp(ug) | V). Setting G = 637, it
follows from (16) that

() S
= 1185, $lu) IS5 + 16 (ur) — S, ()5
< Csq,24t; B(ad, 2d)9k|l¢(uk)ll + Csq,7+dty,
= Cay 2dtk E(3d, 2d)9 o T+th(3d JT+d) AB‘

— (Csas )+C E(3d,T+d)A)6k_ -

E(3d, T+d)63d T— d”¢(u )“T-{-d
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Hence it follows from (6) that
A Fva
< Cr(llp(ue) IS5 0)
- Cle(()l-f-f)(tk fk+1)(”¢(uk)“(k))l+e

14¢€ : _
<G (Csd,zdt )+C AT tb(sd T+d)A> 9(()1+€)(tk tk+1)0k(1+g)
: 1+€
S Cl (C3d 2th(3 Qd) + CBd,T+dtkE(3d7T+d)A) 90_(tk+1)(1+6)
(1+2¢/3)
S 30k+1 ° »

by choosing tg sufficiently large.
Next, let us estimate ¢o. From (6), (15) and the property (iii) of
Theorem 1, we obtain that

léalo’™ < 65" “‘“cllsem vkl3q

< C1Csq 3d+3tk k+1| kl3d4300

< ClC3d 3d+3Vtk (34, 3d+3)9;_|?_’10 Tsefk tet1

9 (1+2¢/3)
— 3 k+1 ’

provided ¢ is sufficiently large.
Finally, we estimate ¢3. By choosing ty sufficiently large, we have,
from (15), that

k 1 k 1 2(t—t k
I3l < (10, velSyT )2 < G5+ (18, . uil$5)?
2
(C E(3d,3d)|v (k)) ag(tk—‘tk+1)

(ng 3thE(3d 3d)) 92(tk-—tk+1)6;27-3

0 (1+2€/3)
— 3 k+1

If we combine the estimates of ¢1, ¢2 and ¢3, the second part of (i)xy1
follows. O

We define a constant M = %:—;NT—T = L(Le+4(2d+1)+1), and for
each integer k > 0, set
k+T+(2+ M)d—
M+1

(17) A(k) =
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The proof of the property (i7); of Lemma 3 can be modified to prove an
: (k)
estimate for Jug|s ' for every s > d.

LEMMA 4. There exist constants (V;)s>q4 such that the sequence {vy}
of Lemma 3 satisfies, for every k > 0 and d < s < A(k), that

l?)klgk) < Vst;“ax(E(S,d),E(s,D))ek_m’

where D = [A2=9 (7, 4+ N + 1) + 5.

(m3—74)

Proof. Keeping the value N = 4(2d + 1), we obtain from (7) and
(4i)x of Lemma 3 that

k+1 2d+1/2 k _
(1+ ,uk+1|£+2d))0kﬁ < Usti / (1+|u klg—i-)2d)0k—+1-\g

—-1/2 —N+2d+1
S UG 20+ fun| By 87 N2

<Us 9#{2 I+ luk|s+2d)0k N’

for d < s < k+ T + 2d. Therefore for each fixed s, the sequence

1+ ]uklgi)w N is bounded, and hence there exists a constant K,

such that
(1+ |ukls+2d)9;N < K,.

Substituting this into (13), we obtain, for d < s < k + T + 2d, that

[ok|®) < Cy(Cspa + Caal(l+ 8 + |uolsy)) Kty 6F
(18) = W/tZ®eN < w,oN+1,

where N = 4(2d + 1) does not depend on s. Now, if d < s < A(k), the
definition of A(k) in (17) shows that D < k + T + 2d. Therefore for

(r3=74)
9755_-'54; .
b)

d < s < A(k), we rewrite our interpolation formula with 6 = 6,
|vel ) < S5, vl + v — Sg, vi |
<0, at E(s, d)es d| (k)—{-Cg Dtk(s D)Gs D|U l(k)
< Coaty VO™ + Gy pty P Wpo™

<V, tmax(E(s d),E(s,D) )9 7-4

where we have used the estimate (18). O
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Proof of the Theorem 1. Let u; and v, be as in Lemma 3. From
lemma. 4 we have, for any j > 0 and d < s < A(j), that

i FE(s,s 1
16,4,0515 < Casty ™ |

S CS,S‘/StJE(s,s)—FmaX(E(s,d),E(s,D))0;7-4 SASGJ'—TS-
By (6) one thus obtains, for d < s < A(j), that
1+e/4)(t;—t '
(19) [So50, 0510 < 85 TIPTS5, 05|

= Lg,5415 j
— CS”QASG‘;G/IZ

because (1 + €/4) — 75 = —¢/12. By virtue of (17), we also have
(20) A(j) < s if and only if j < A7 (s) = s(M+1)~(2+M)d—T+1.

Now for each fixed s > 0, the sequence u = ug + ZK,C Sp, ., v; is

convergent in BY because

|ZS&1+IUj‘EO) < Z S9J+1vj|§0) + | Z SG;'HUJ'IgO) < o0,

J<ATH(s) JZA7(s)

J+1

where the first sum in the right is finite sum by (20), and the second
sum in the right is finite by (19). Moreover, the limit v € B, of the
sequence uy satisfies

1
ey < lld(u)lsy + | / & (ur + t(u — ur)) (u — u)dt]| )
< llgCur)llsy + Crlu — wely,
and by (6), one obtains that
lp(ulSy < 66/ lg(ur) g < 67+,

for all k. Therefore, by taking limit for k = oo, it follows that ¢(u) = 0
and this proves Theorem 1 with B = 2d and b = 65 2to, |
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