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STABILITY OF A MIXED QUADRATIC AND ADDITIVE
FUNCTIONAL EQUATION IN QUASI-BANACH SPACES
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ABSTRACT. In this paper we establish the general solution of the functional
equation

FRz+y)+ flz—2y) = 2f(z +y) +2f(z — y) + f(~2) + f(~y)
and investigate the Hyers—Ulam—Rassias stability of this equation in quasi-
Banach spaces. The concept of Hyers-Ulam-Rassias stability originated
from Th. M. Rassias’ stability theorem that appeared in his paper: On the

stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.
72 (1978), 297-300.
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1. Introduction

In 1940, S.M. Ulam [45] gave a talk before the Mathematics Club of the
University of Wisconsin in which he discussed a number of unsolved problems.

Among these was the following question concerning the stability of homomor-
phisms.

Let (G1,%) be a group and let (Gz,9,d) be a metric group with the metric
d(-,-). Given € > 0, does there exist a §(¢) > 0 such that if a mapping h : Gy —
G satisfies the inequality

d(h(z xy), h(z) o h(y)) < 8
for all x,y € Gy, then there is a homomorphism H : G1 — Go with
d(h(z), H(z)) < €
for allx € G,?
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In 1941, D. H. Hyers [12] considered the case of approximately additive map-
pings f : E — E’, where E and E’ are Banach spaces and f satisfies Hyers
1equality

1f(z+y) - flz) = f)ll <e
for all z,y € E. It was shown that there exists a unique additive mapping
L: E — E’ satisfying
1f(z) — L{z)l| < e.

In 1978, Th.M. Rassias [36] provided a generalization of Hyers’ theorem which

allows the Cauchy difference to be unbounded.

Theorem 1. (Th.M. Rassias) Let f : E — E’ be a mapping from a normed
vector space E into a Banach space E' subject to the inequality

If (2 +y) = Fx) = FWI < e(llzl” + yll?) 1)
for all z,y € E, where € and p are constants with € > 0 and p < 1. Then there
exists a unigue additive mapping L : E — FE’ which satisfies

2¢
_ P
17(z) = L@l < 5—; Il (2)

forallz € E. If p <0 then inequality (1) holds for z,y # 0 and (2) for x # 0.
Also, if for each € E the mapping t — f(tz) is continuous in t € R, then L is
linear.

The above inequality has provided a lot of influence in the development of
what is now known as a generalized Hyers—Ulam—Rassias stability of functional
equations. J.M. Rassias [35| followed the innovative approach of Th.M. Rassias’
theorem in which he replaced the factor ||z||” + ||y||? by ||z]|? - ||y||? for p,q € R
with p+ g # 1. Gévruta [9] provided a further generalization of Th.M. Rassias’
theorem. During the last two decades a number of papers and research mono-
graphs have been published on various generalizations and applications of the
generalized Hyers-Ulam—Rassias stability to a number of functional equations
and mappings (see [3], [8], [11], [13], [15]-[18], [23]-[34], [37], [38]). We also refer
the readers to the books [1], [6], [14], [39]-{42].

Quadratic functional equation was used to characterize inner product spaces
[1,2,19]. Several other functional equations were also to characterize inner prod-
uct spaces. A square norm on an inner product space satisfies the important
parallelogram equality

e+ yl* + flz — ylI> = 2(ll2)1 + Jlul|®)-
The functional equation
fle+y)+ flz —y) =2f(z) +2f(y) (3)

is related to a symmetric bi-additive function [1,22]. It is natural that each
equation is called a quadratic functional equation. In particular, every solution
of the quadratic equation (3) is said to be a quadratic function. It is well known
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that a function f between real vector spaces is quadratic if and only if there
exists a unique symmetric biadditive function B such that f(z) = B(z,z) for
all z (see [1,22]). The biadditive function B is given by

By = 7 (fe )~ 1@ ). (1)

A Hyers—Ulam stability problem for the quadratic functional equation (3) was
proved by Skof for functions f : By — E,, where F; is a normed space and E,
a Banach space (see [44]). Cholewa [5] noticed that the theorem of Skof is still
true if the relevant domain E) is replaced by an Abelian group. In the paper
[7], Czerwik proved the Hyers-Ulam-Rassias stability of the quadratic func-
tional equation (3). Grabiec [10] has generalized these results mentioned above.
Jun and Lee [21] proved the Hyers-Ulam-Rassias stability of the pexiderized
quadratic equation (3). K. Jun and H. Kim [20], have obtained the generalized
Hyers-Ulam stability for a mixed type of cubic and additive functional equation.

In this paper, we deal with the next functional equation deriving from qua-
dratic and additive functions:

fCx+y) + flz - 2y) =2f(z +y) +2f(x —y) + f(—=z) + f(—y) (5)

It is easy to see that the function f(x) = ax?+bx is a solution of the functional
equation (5). The main purpose of this paper is to establish the general solution
of Eq. (5) and investigate the Hyers-Ulam-Rassias stability for Eq. (5).

We recall some basic facts concerning quasi-Banach spaces and some prelim-
inary results.

Definition 1. [4,43] Let X be a real linear space. A quasi-norm is a real-valued
function on X satisfying the following:

(@) |lz|| = 0 for all z € X and ||z|| = 0 if and only if z = 0.
() || Az|| = |A|||z| for all A € R and all 2 € X.
(iii) There is a constant K > 1 such that |z + y|| < K(|lz|| + ||y|) for all

z,y € X.
The pair (X, ||.||) is called a quasi-normed space if |.|| is a quasi-norm on X.
The smallest possible K is called the modulus of concavity of ||.||. A quasi-Banach

space is a complete quasi-normed space.
A quasi-norm ||. || is called a p-norm (0 < p < 1) if

e 4+ yll” < llzl” + llyll”

for all z,y € X. In this case, a quasi-Banach space is called a p-Banach space.

By the Aoki-Rolewicz theorem {43] (see also [4]), each quasi-norm is equiva-
lent to some p-norm. Since it is much easier to work with p-norms than quasi-
norms, henceforth we restrict our attention mainly to p-norms.

2. Solutions of Eq. (5)
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Throughout this section, X and Y will be real vector spaces. Before proceed-
ing the proof of Theorem 2 which is the main result in this section, we shall need
the following two lemmas.

Lemma 1. If an even function f: X — Y satisfies (5) for all x,y € X, then f
s quadratic.

Proof. Note that, in view of the evenness of f, we have f(—z) = f(z) for all
z € X. Putting « = y = 0 in (5), we get f(0) = 0. Setting y = 0 in (5), we
obtain that f(2z) = 4f(z) for all x € X. Replacing x and y by z +y and = — y
in (5), respectively, we get by the evenness of f,

fBz+y)+ flz—3y) = flz +y) + f(z —y) +8f(y) + 8 (y) (6)
for all z,y € X. Replacing  and y by y and z in (6), respectively, we get
f@+3y) + fBz —y) = flz +y) + flz — y) +8f(z) +8f(y) (7)
for all z,y € X. Adding (6) to (7), we get
fBz +y)+fBz —y) + fz + 3y) + f(z — 3y)
=2f(z +y) +2f(z —y) +16f(z) + 16/ (y)
for all z,y € X. If we replace y by z +y in (5), we have
Bz +y) +f@+2) =2fQx+y) + flzty) + fl@)+2fy)  (9)
for all z,y € X. Replacing x and y by y and z in (9), respectively, we get
fl@+3y) + fQRx+y) =2f(+2y) + flz +y) +2f(x) + fly)  (10)
for all 2,y € X. Adding (9) to (10), we get
FBz+y)+ flz+3y) = fQ2z +y) + flz + 2y)
+2f(x +y) + 3f(x) + 3f(y)
for all z,y € X. Replacing y by —y in (11) and using the evenness of f, we get
fBz —y) + flz —3y) = 2f(2z — y) + flz — 2y) (12)
+2f(z—y) +3f(z) +3f(y)
for all 2,y € X. Adding (11) to (12), we obtain that
fBz+y)+f(Bz —y) + flz +3y) + flz — 3y)

= [f2z+y) + flz —2y)] + [f2z —y) + f(z + 2y)]
+2f(z +y) +2f(x —y) + 6f(x) + 6£(y) (13)

for all 2,y € X. Since f is an even function, then by Replacing x and y by y and
x in (5), respectively, we get that

fRz+y)+ flz—2y) = f2x —y) + f(z +2y)

(®)

(11)
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for all 2,y € X. Therefore we obtain from (5) and (13) that
FBz+y)+fBz —y) + f(x +3y) + f(z — 3y)

14
—6f(a 1 9) +O5 ) 8SE) L8f) Y
for all z,y € X. So we obtain from (8) and (14) that
fle+y)+ [l —y) =2f(2) + 2f(y)
for all z,y € X. Therefore the functionf : X — Y is quadratic. (1

Lemma 2. If an odd function f : X —Y satisfies (5) for all x,y € X, then f
s additive.

Proof. Note that, in view of the oddness of f, we have f(—z) = —f(x) for all
z € X. Therefore f(0) =0 and (5) implies the following equation

fRe+y) + fle—2y) =2f(z +y) + 2f(z —y) - f(z) — fly) (1)
for all z,y ¢ X. Letting y = 0 in (15), we get that
fQ2z) =2f(z) (16)

for all z € X. Replacing = and y by y and —z in (15), respectively, and using
the oddness of f, we get

fQz+y) - flo —2y) = 2f(z +y) —2f(x —y) + f(z) — f(y) (17)
for all z,y € X. Adding (15) to (17), we obtain that
fRz+y) =2f(z+y) - fy) (18)
for all z,y € X. Replacing y by 2y in (18) and using (16), we get
flz+y) = flz+2y) — fly)

for all z,y € X. Replacing z and y by y and z in the last equation, respectively,
we obtain

fla+y) = fQx+y) — flz) (19)
for all 2,y € X. Hence it follows from (18) and (19) that f(z +y) = f(z) + f(y)
for all ,y € X. So the mapping f : X — Y is additive. O

Now we are ready to find out the general solution of (5).

Theorem 2. A function f : X — Y satisfies (5) for all z,y € X if and only
if there exist a symmetric bi-additive function B: X x X — Y and an additive
function A: X — Y such that f(z) = B(x,z) + A(z) for all z € X.
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Proof. If there exist a symmetric bi-additive function B : X x X — Y and an
additive function A : X — Y such that f(x) = B(z,z) + A(x) for all z € X it
is easy to show that

fQz +y) + f(z - 2y) = 5B(x,z) + 5B(y,y) + 3A(z) — A(y)
=2f(z+y) +2f(x —y) + f(—2) + f(~y)

for all z,y € X. Therefore the function f : X — Y satisfies (5).

Conversely, we decompose f into the even part and the odd part by putting

T)+ f{—=x r)— f(—=x

ERECL(C RO (C
for all x € X. It is clear that f(z) = f.(z) + fo(x) for all z € X. It is easy to
show that the functions f, and f, satisfy (5). Hence by Lemma 1 and Lemma 2
we achieve that the functions f, and f, are quadratic and additive, respectively.
Therefore there exists a symmetric bi-additive function B : X x X — Y such
that fo(x) = B(z,z) for all 2 € X (see [1]). So f(z) = B(z,z) + A(z) for all
x € X, where A(z) = fo(z) forall z € X. O

3. Hyers—Ulam—Rassias stability of Eq. (5)

Throughout this section, assume that X is a quasi-normed space with quasi-
norm |.||x and that Y is a p-Banach space with p-norm ||.|ly. Let K be the
modulus of concavity of ||.|y.

In this section, using an idea of Géavruta [9] we prove the stability of Eq. (5)
in the spirit of Hyers, Ulam and Rassias. For convenience, we use the following
abbreviation for a given function f: X — Y :

Df(z,y) := f(2z 4+ y) + f(x — 2y) — 2f(z +y) — 2f(z —y) — f(—z) — f(—v)

for all z,y € X.
We will use the following lemma in this section.

Lemma 3. [26] Let 0 < p <1 and let 1, Z2,...,T, be non-negative real num-
bers. Then
k(3 p n
( :1:1) <Y e (20)
i=1 =1

Theorem 3. Let ¢ : X x X — [0,00) be a function such that

() - o
— N x
Yelx) := Z4’p<p”<§,0) < oo (22)
i=1

forallx,y € X. Suppose that an even function f : X — Y satisfies the inequality
I1Df(z,y)lly <wolz,y) (23)
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for all z,y € X. Then the limit

Qz) = hm 4"f( ) (24)
exists for all x € X and Q : X — Y is a unique quadratic function satisfying
1

=

A

1£(z) = Q@)lly < ;[@e()] (25)
forallz € X.

Proof. Tt follows from (22) that ¢(0,0) = 0. So (23) implies that f(0) = 0.
Letting y = 0 in (23), we get

17 (22) — 4f(@)]ly < ¢(z,0) (26)
for all z € X. If we replace x in (26) by %%+ and multiply both sides of (26) by

4™, then we have
() (), ) e

for all z € X and all non-negative integers n. Since Y is a p-Banach space, we
x TN\~
n-+1
v (o) -5, < X

have
i+1 x . i 14
’ ¢ f(2i+1)_41f(2i)Hy
==m

<Zw (2-0) (28)

for all z € X and all non-negative integers m and n with n > m. Therefore we
conclude from (22) and (28) that the sequence {4™ ()} is a Cauchy sequence
inY for all z € X. Since Y is complete, the sequence {4" f(5%)} converges for
all z € X. So one can define the mapping @ : X — Y by (24) for all 2 ¢ X.
Letting m = 0 and passing the limit n — oo in (28), we get

) - Q@ <342 (5.0) - LY am(.0) o

for all # € X. Therefore we obtain (25). Now, we show that @ is quadratic. It
follows from (21), (23) and (24),

IDQz,y)lly = lim 4"

D1 (53 )l
N

< i o 5) o
for all z,y € X. Therefore the mapping Q : X — Y satisfies (5). Since f is
even, then Q) is even. So by Lemma 1 we get that the mapping Q : X — Y is
quadratic.
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To prove the uniqueness of @, let T : X — Y be another quadratic mapping
satisfying (25). Since

o0
i np ip w —
4 ;4 & (gurer0) = Jim Z 177 (5::0) =0

i=n+1

for all z € X, then it follows from (25) that

1Q(z) — T(@)|[§ = lim 4"

n—o0

(7)) -ml,

1 x
< e lim 4"”<p8(2 ) =0

n—00

foralz € X. So Q =T. D

Theorem 4. Let ® : X x X — [0,00) be a function such that

lim —<I>( T, 2My) = 0, (30)
n—oo 4"
Do () := 4qu>p( r,0) < oo (31)
i=0
forallxz,y € X. Suppose that an even function f : X — Y satisfies the inequality
IDf(z,y)lly < ®(z,y) (32)
for all z,y € X. Then the limit
1
Q(z) := lim — f(2"x) (33)
n—oo 47
exists for all x € X and Q : X — 'Y is a unique quadratic function satisfying
1 1.~ 1
|£@) - Q@) - 350)]| | < 70.@)? (34)

forallz e X.
Proof. Letting y = 0 in (32), we get
1f(22) — 4f(z) = f(O)]ly < ®(z,0) (35)

for all z € X. If we replace z in (35) by 2"z and divide both sides of (35) to
47+ we get that

| et ia)— i@ ) O, < @0 (36)

4n+1
for all z € X and all non-negative integers n. Since Y is a p-Banach space,

1 n 1 om S| P
el @) = i) = 3 o,
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7
<3|
i=m

1 T 1 )
- PP,
<5 2 a0
=1

for all x € X and all non-negative integers m and n with n > m. Since > .= %
converges, then it follows from (31) and (37) that the sequence { 3 f(2"x)}
is a Cauchy sequence in YV for all z € X. Since YV is complete, the sequence
{ & f(2"z) } converges for all z € X. So one can define the mapping @ : X — Y
by {(33) for all € X. The rest of the proof is similar to the proof of Theorem
3. 1

1o, L, 1 P
e [ — L) - i)

(37)

Corollary 1. Let 6 be non-negative real number. Suppose that an even function
f: X =Y satisfies the inequality
IDf(z,y)lly <0 (38)

for all z,y € X. Then there exists a unique quadratic function @ : X — Y
satisfies

17(@) -~ Q@ < Ko[——+ L]

(v — 1)y 12

for all x € X, where K is the modulus of concavity of |I.||y.

Proof. Let ®(z,y) = 6 for all z,y € X. It follows from (38) that || f(0)||y < 6/4.
So the result follows by Theorem 4. ]

Corollary 2. Let 0,7,5 be non-negative real numbers such that r,s > 2 or
0 < r,s < 2. Suppose that an even function f: X — Y satisfies the inequality

1Df (= w)lly < 6(l2% + llwll5) (39)

for all z,y € X. Then there exists a unique quadratic function @ : X — Y
satisfies

1f(z) = Qz)lly < 2%

|2m 74p§%
forallz € X.

Proof. 1t follows from (39) that f(0) = 0. Hence the result follows by Theorems
3 and 4. O

Corollary 3. Let 0,1 be non-negative real numbers such that r € (0,2)U (2, o).
Suppose that an even function f: X — Y satisfies the inequality

IDf(z, Yy < dlzlx (40)
for all z,y € X. Then the function f: X — Y is quadratic.
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Proof. 1t follows from (40) that f(0) = 0. Letting z = 0 in (40), we get that
f(2y) = 4f(y) for all y € X. By induction we infer that f(2"y) = 4™ f(y) for all
y € X and all n € Z. So the result follows by Theorems 3 and 4. O

Corollary 4. Let 0, s be non-negative real numbers such that s € (0,2)U (2, 00).
Suppose that an even function f: X — Y satisfies the inequality

1Df(z,y)lly <0lylx (41)
for oll x,y € X. Then the function f : X — 'Y is quadratic.

Corollary 5. Let 0,7, s be non-negative real numbers such that v+ s € (0,2)U
(2,00). Suppose that an even function f: X — Y satisfies the inequality

1Df(z,y)lly < 0llzllxlyll% (42)
for all z,y € X. Then the function f : X — Y is quadratic.

Proof. Similar to the proof of Corollary 3, we get f(2"z) = 4" f(z) forallz € X
and all n € Z. So the result follows by Theorems 3 and 4. (]

Theorem 5. Let ¢ : X x X — [0,00) be a function such that

el ) -0 w
Polz) =3 27P (—;7 0) < 0 (44)
=1

for all x,y € X. Suppose that an odd function f: X — Y satisfies the inequality
(23) for all x,y € X. Then the limit

x
= li " — 4
0= () o
exists for allx € X and A: X — 'Y is a unique additive function satisfying
1. 1
17(z) = A@)lly < S[eo()] (46)

forall z € X.
Proof. 1t is clear that f(0) = 0. Letting y = 0 in (23), we have
1/(22) = 2f(z)lly < #(z,0) (47)

for all z € X. If we replace  in (47) by 5% and multiply both sides of (47) by
2™, we get

() ), <relEny) o
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for all z € X and all non-negative integers n. Since Y is a p-Banach space,

[oo+1 () s () = 2o [ (58) 2o ),
<ZQ”’ <2l+l,) (49)

for all z € X and all non-negative integers m and n with n > m. Therefore we
conclude from (44) and (49) that the sequence {2"f(Z)} is a Cauchy sequence
in Y for all z € X. Since Y is complete, the sequence {2"f(Z%)} converges for
all z € X. So one can define the mapping 4 : X — Y by (45) for all z € X.
Letting m = 0 and passing the limit n — oo in (49), we get (46). Now, we show
that A is additive. It follows from (23), (43) and (45),

2f (530 )l
. roYyN
< m () -

for all z,y € X. Therefore the mapping A : X — Y satisfies (5). Since f is an
odd function, then (45) implies that the mapping A : X — Y is odd. Therefore
by Lemma 2 we get that the mapping A : X — Y is additive.

To prove the uniqueness of 4, let 7 : X — Y be another additive mapping
satisfying (46). Since

&9}
. n i % —
i 2732 (i 0) = Jim > 272 (5.0) =0

i=n+1

IDA(z, y)|ly = hrn 2m

for all z € X, then it follows from (45) and (46) that
. P _ lip 9"P _r(E H
lA) ~ 7@, = tim 2| r( ) - 7(55)

<L iim 2"1’%(2n,0) ~0

T 2P n—oo

forallz € X. So A =T. U

Theorem 6. Let @ : X x X — [0 00) be a function such that

lim ——<I>(2":L 2"y} =0, (50)
n—oo 27
— * 1
Do) =Y 277@?’( z,0) < 00 (51)
i=0

Jor allz,y € X. Suppose that an odd function f: X — Y satisfies the inequality
(32) for all x,y € X. Then the limit

Afa) 1= lim oo f(2") (52)

n—o0
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exists forallz € X and A: X — Y is a unique additive function satisfying

17@) ~ A@ly < 5[Fo(x)]> (5)
forallz € X.
Proof. Tt is clear that f(0) = 0. Letting y = 0 in (32), we have

If(2z) —2f(2)lly < &(z,0) (54)

for all z € X. If we replace = in (54) by 2"z and divide both sides of (54) to
2n+1 then we have

1 n 1 n
|smsera) 5o fem)| < soge(ia,0) (55)
for all x € X and all non-negative integers n. Since Y is a p-Banach space,

[t - sl < 3|

1 <1 (56)
D
<o > 7 (2°x,0)

t=m

1, (PN
9i+1 f(2 +1£U) - Ef(Q x)HY

for all z € X and all non-negative integers m and n with n > m. It follows from
(51) and (56) that the sequence { 5% f(2"x) } is a Cauchy sequence in Y for all
z € X. Since Y is complete, the sequence { —21—n f(2™x) } converges for all z € X.
So one can define the mapping A : X — Y by (52) for all z € X.

The rest of the proof is similar to the proof of Theorem 5. il

Corollary 6. Let 0 be non-negative real number. Suppose that an odd function
[+ X — Y satisfies the inequality (38) for all x,y € X. Then there exists a
unique additive function A: X — Y satisfies
]
1f(z) = A@)ly < ——=
(2 - 17
fordlze X.

Corollary 7. Let 0,r,s be non-negative real numbers such that r,s > 1 or
0 < r,s < 1. Suppose that an odd function f : X — Y satisfies the inequalily
(39) for all x,y € X. Then there exists a unique additive function A: X —Y
satisfies

7]
[f(z) — Alz)|ly < m” 7|
forallxz € X.

Proof. Since f is an odd function, then f(0) = 0. Hence the result follows by
Theorems 5 and 6. O
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Corollary 8. Let 8,1 be non-negalive real numbers such that r € (0,1)U(1, 00).
Suppose that an odd function f : X — Y satisfies the inequality (40) for all
x,y € X. Then the function f: X — Y is additive.

Proof. Since f(0) = 0, letting « = 0 in (40), we get that f(2y) = 2f(y) for all
y € X. By induction we infer that f(2"y) = 2" f(y} for all y € X and all n € Z.
So the result follows by Theorems 5 and 6. O

Corollary 9. Let 8, s be non-negative real numbers such that s € (0,1)U (1, 00).
Suppose that an odd function f : X — Y satisfies the inequality ({1} for all
x,y € X. Then the function f:. X — Y is additive.

Corollary 10. Let 0,7, s be non-negative real numbers such that r+s € (0,1)U
(1,00). Suppose that an odd function f: X — Y satisfies the inequality (42) for
all z,y € X. Then the function f: X — Y is additive.

Proof. Similar to the proof of Corollary 8, we get f(2"z) = 2" f(z) forallx ¢ X
and all n € Z. So the result follows by Theorems 5 and 6. il

We now prove our main theorems in this section.

Theorem 7. Let ¢ : X X X — [0,00) be a function satisfies (21) and (22) for
all x,y € X. Suppose that a function f . X — Y satisfies the inequality (23) for
all z,y € X. Then there exist a unique quadratic function @ : X — Y and a
unique additive function A: X —'Y satisfying (5) and

2

1£(z) - Q&) — Ay < 2 { Fele) + Bl -2))F

8
+2055(0) + Bo(—2)]7 |

for all x € X, where go(x) and $o(z) has been defined in (22) and (44), respec-
tively, for all z € X.

(67)

Proof. Tt follows from (22) that ¢(0,0) = 0. So (23) implies that f(0) = 0. Let
fela) = W for all z € X. Then fe(0) =0, fo(—2) = fe(x) and

105wy < 5 [t 9) + o5, -)

forall z,y € X. Let

K
Wlz,y) =5 [@(:Lx y) + (-, ~y)J
forall z,y € X. So
. (T YN
Jim 475,57 ) =0

for all 2,4 € X. Since

YP(z,y) < %p— [@p{m, Yy + (=, —y)} {by Lemma 3)
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for all z,y € X, then

oo z
- 24%1’(5,0) <o
i=1

for all x € X. So in view of Theorem 3, there exists a unique quadratic function
Q@ : X — Y satisfying

[ £e(z) — Q(@)|ly < < w)e(x)ﬁ <

for all x € X.
Now, let f,(z) = £B=FE2) for all 2 € X. Then £,(0) = 0, fo(~2) = —fo(2)
and

s

K
NG (58)

EOERIE]

HDfo(‘T,y)”Y < ¢($7 y)

for all z,y € X. In view of Theorem 5, there exists a unique additive function
A: X —'Y satisfying

£o(a) ~ Ay < G0 (59)

for all x € X, where

= Some(20) o

Since e
Yol@) < 5 [Pol@) + Bol—a)]
for all z € X, it follows from (59) that
Kr_ —
1fo(@) = A@)lly < 5 [Fal@) + Eo(—2)]
for all z € X. Hence (57) follows from (58) and (61). O

1
P

(61)

Theorem 8. Let & : X x X — [0,00) be a function satisfies (50) and (51) for
all z,y € X. Suppose that a function f : X — Y satisfies the inequality (32) for
all ¢,y € X. Then there exist a unique quadratic function @ : X — Y and a
unique additive function A: X — 'Y satisfying (5) and

7@ - @) - @) - 1r0)], < 5 { @) + G-t
+2(8,(2) + B(-w)]F | (62)

for all x € X, where :fe(a:) and i(m) has been defined in (81) and (51), respec-
tively, for all xz € X.

Proof. Similar to the proof of Theorem 7, the result follows from Theorems 4
and (6). O
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Corollary 11. Let 6 be non-negative real number. Suppose that a function
[+ X — Y satisfies the inequality (38) for all z,y € X. Then there exist a
unique quadratic function Q : X — Y and a unique additive function A+ X — Y
satisfying (5) and

+ +=

1760) = A) = Qally < Kol gt A ]

forallx e X.
Proof. We decompose f into the even part (f.) and the odd part (f,). It is clear
that
IDfe(z,y)ll < K6, [ Dfolz,y)ll < KO
for all 2,y € X. Hence the result follows by applying Corollaries 1 and 6. O

Corollary 12. Let 6,r,s be non-negative real numbers such that r,s > 2 or
0 <r,s < 1. Suppose that a function f : X — Y satisfies the inequality (39)
for all x,y € X. Then there exist a unique quadratic function Q@ : X —» Y and a
unique additive function A: X —'Y satisfying (5) and

1

|2rp~4p|i |2Tp72p|%

1£(2) = A@) = Q@) Iy < K26 IS

forallx € X,

Proof. By decomposing f into the even part (f.) and the odd part (f,), we get

IDfe(z, )l < KO(lzl% + yll%), DSz, y)ll < Ko(llelk +llyl%)
for all z,y € X. Hence the result follows by applying Corollaries 2 and 7. g

Corollary 13. Let 6, r be non-negative real numbers such that r € (0,1)U(2, 00).
Suppose that a function f: X —Y satisfies the inequality (40) for all z,y € X.

Then the function f. : X — Y is quadratic and the function f, : X — Y is
additive.

Proof. Since
[1Dfe(z, )l < Kbllzlx, | Dfo(z, vl < Kollz|k
for all z,y € X, then the result follows by applying Corollaries 3 and 8. g

Corollary 14. Let 0, s be non-negative real numbers such that s € (0,1)U(2, 00).
Suppose that a function f: X — Y satisfies the inequality (41) for all z,y € X.

Then the function f. : X — Y is quadratic and the function f, : X — Y is
additive.
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Corollary 15. Let 8,r, s be non-negative real numbers such that r+s € (0,1)U

(2,

o0). Suppose that a function f : X — Y satisfies the inequality (42) for

all z,y € X. Then the function f. : X — Y is quadratic and the function

fo

: X =Y is additive.

Proof. Since

[Dfe(z, v)l| < K|zl lyl%,  [Dfo(z,y)ll < Kbzl lyllk

for all z,y € X, then the result follows by applying Corollaries 5 and 10. g
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