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COMMUTATORS OF THE MAXIMAL FUNCTIONS ON

BANACH FUNCTION SPACES

Müjdat Ağcayazi and Pu Zhang

Abstract. Let M and M# be Hardy-Littlewood maximal operator and

sharp maximal operator, respectively. In this article, we present neces-
sary and sufficient conditions for the boundedness properties for commu-

tator operators [M, b] and [M#, b] in a general context of Banach func-

tion spaces when b belongs to BMO(Rn) spaces. Some applications of
the results on weighted Lebesgue spaces, variable Lebesgue spaces, Orlicz

spaces and Musielak–Orlicz spaces are also given.

1. Introduction

Let T be a Calderón–Zygmund singular integral operator. In 1976, Coifman,
Rochberg and Weiss [6] studied the commutator generated by T and a function
b ∈ BMO(Rn) as follows:

[T, b]f(x) := T (bf)(x)− b(x)Tf(x).(1)

A well-known result states that [T, b] is bounded on Lp(Rn) for 1 < p < ∞
if and only if b ∈ BMO(Rn). Sufficiency was proved by Coifman, Rochberg and
Weiss [6] and necessity part was obtained by Janson [24]. Unlike the classical
theory, [T, b] fails to be weak type (1, 1) and enjoys weak L(1 + log+ L) type
estimate (see [30]).

The Hardy–Littlewood maximal operator M is defined by

Mf(x) = sup
Q∋x

1

|Q|

∫
Q

|f(y)|dy,

where the supremum is taken over all the cubes containing x with sides parallel
to the coordinate axes and where f is any locally integrable function.
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Define a basis B to be a collection of open sets B ⊂ Rn. A basis B is called a
Muckenhoupt basis if for each p, 1 < p < ∞, and every w ∈ Ap,B, the maximal
operator MB associated with B is bounded on Lp(w).

Throughout the paper, all cubes are assumed to have their sides parallel to
the coordinate axes which is an example of the Muckenhoupt basis (see [10]).

We recall that the sharp maximal operator M# of Fefferman–Stein is given
by

M#f(x) = sup
Q∋x

1

|Q|

∫
Q

|f(y)− fQ|dy,

where fQ denotes the usual average of f over Q, namely fQ = 1
|Q|

∫
Q
f , and,

also, the supremum is taken over all cubes containing x.
The spaces of functions of bounded mean oscillation, BMO(Rn), consist of

all the locally integrable functions f such that M#f ∈ L∞(Rn). In other words

∥f∥BMO = ∥M#f∥∞ := sup
Q

1

|Q|

∫
Q

|f(y)− fQ|dy < ∞.

Definition 1. For a fixed cube Q0, the Hardy–Littlewood maximal function
with respect to Q0 of a function f is given by

MQ0
f(x) := sup

Q0⊇Q∋x

1

|Q|

∫
Q

|f(y)| dy,

where the supremum is taken over all the cubes Q with Q0 ⊇ Q and Q ∋ x.

For a function b defined on Rn, b+(x) and b−(x) is defined by b+(x) :=
max{b(x), 0} and b−(x) := −min{b(x), 0}. As a result b(x) = b+(x) − b−(x)
and |b(x)| = b+(x) + b−(x).

Lemma 1.1 ([2]). Let b be a locally integrable function on Rn. If

1

|Q|

∫
Q

|b(x)−MQ(b)(x)|dx < ∞,(2)

then b ∈ BMO(Rn) and b− ∈ L∞(Rn).

In order to investigate [M, b], we start with the consideration of maximal
commutators Mbf . Given a measurable function b, the maximal commutators
Mbf are defined by

Mb(f)(x) := sup
Q∋x

1

|Q|

∫
Q

|b(x)− b(y)||f(y)|dy, (x ∈ Rn).

This operator plays an important role in the study of commutators of singu-
lar integral operators with BMO symbols (see [14, 28, 34, 35]). In [14], Garćıa–
Cuerva et al. proved that Mb is bounded on Lp(Rn), p > 1, if and only if
b ∈ BMO(Rn). In general, Mb fails to be weak type (1,1) when b ∈ BMO(Rn)
(see [14]). Instead, an endpoint theory was provided for this operator such as
weak type L(1 + log+ L), see for instance [1, 20,21].
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Similar to (1), we can give the definitions of commutators of maximal oper-
ators as follows:

Let b be a locally integrable function on Rn. We define the commutator
operators [M, b]f and [M#, b]f as

[M, b]f :=M(bf)− bMf,

[M#, b]f :=M#(bf)− bM#(f),

respectively. The commutator of the maximal function [M, b] arises, for exam-
ple, when one tries to give a meaning to the product of a function in Hardy
spaces H1 and a function in BMO(Rn) (which may not be a locally integrable
function, see [4]). In 1990, Milman and Schonbek [29] proved by using the real
interpolation method that the commutator is a bounded map from Lp(Rn)
onto itself for p > 1 if a nonnegative symbol b belongs to BMO(Rn). In 2000,
Bastero, Milman and Ruiz [2] studied the necessary and sufficient conditions
for the boundedness of [M, b] and [M#, b] on Lp(Rn) spaces. A simple example
shows that [M, b] is not of weak type (1, 1) and enjoys weak type L(1+ log+ L)
estimates (see [1]).

The mapping properties of these operators have been studied by several
authors in many function spaces such as variable Lebesgue spaces, Morrey
spaces, Orlicz spaces and some remarkable results have been obtained (see
[16], [36], [39], [41]).

The purpose of this paper is to extend the above boundedness results in a
general context of Banach function space X over Rn equipped with Lebesgue
measure. For a Banach function space X, we denote by X ′ the associated space
of it (see Section 2 for details). Our main results are the following:

Theorem 1.2. Let X be a Banach function space. Assume that M is bounded
on both X and X ′. Then Mb is bounded from X to itself if and only if b ∈
BMO(Rn).

Theorem 1.3. Let X be a Banach function space. Assume that M is bounded
on both X and X ′. Then the following assertions are equivalent:

(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) [M, b] is bounded on X.
(iii) There exists a constant c > 0 such that

sup
Q

∥(b−MQ(b))χQ∥X
∥χQ∥X

≤ c < ∞.

Theorem 1.4. Let X be a Banach function space. Assume that M is bounded
on both X and X ′. Then the following assertions are equivalent:

(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) [M#, b] is bounded on X.
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(iii) There exists a constant c > 0 such that

sup
Q

∥(b− 2M#(bχQ))χQ∥X
∥χQ∥X

≤ c < ∞.

This paper is organized as follows: Section 2 contains some basic definitions
and facts which will be used throughout the paper. In Section 3, we give the
proofs of Theorems 1.2, 1.3, and 1.4. Finally in Section 4, we present some
examples of Banach function spaces and reduce the results to these spaces and
give some corollaries.

2. Some preliminaries

We begin with some definitions, lemmas and the theorems which we use to
prove our main theorems.

Let Ω be any measurable subset of Rn. Let M(Ω) denote the set of all
(Lebesgue) measurable functions on Ω and M+(Ω) the class of functions in
M(Ω) that are nonnegative a.e.. χQ is the characteristic function of Q and |Q|
is the Lebesgue measure of Q. Throughout the paper, we always denote by c
or C a positive constant, which is independent of main parameters but it may
vary from line to line.

2.1. Banach function spaces

Definition 2. Let ρ : M+(X) → [0,∞) be a mapping satisfying, for all f, g, fk
(k = 1, 2, 3, . . .), in M+(X) and all constants α ∈ R,

(i) ρ(f) = 0 ⇔ f = 0 a.e.; ρ(αf) = |α|ρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),
(ii) if |f | ≤ |g| a.e., then ρ(f) ≤ ρ(g),
(iii) if |fk| ↑ |f | a.e., then ρ(fk) ↑ ρ(f),
(iv) if E ⊆ Rn is bounded, then ρ(χE) < ∞,
(v) if E ⊆ Rn is bounded, then∫

E

|f |dx ≤ cEρ(f).

By a Banach function space X over Rn equipped with Lebesgue measure,
we mean a collection of functions f in M(X) such that

∥f∥X = ρ(|f |) < ∞.

A more common requirement is that E is a set of finite measure in (iv) and
(v).

Given a Banach function space X, equipped with a norm ∥·∥X , the associate
space of X is defined by

X ′ =

{
f ∈ M(X) : ∥f∥X′ := sup

g∈X,∥g∥X≤1

∣∣∣∣ ∫
Rn

f(x)g(x)dx

∣∣∣∣ < ∞

}
.



COMMUTATORS OF THE MAXIMAL FUNCTIONS 1395

Moreover, we have the following generalization of Hölder’s inequality:∫
Rn

|f(x)g(x)|dx ≤ ∥f∥X∥g∥X′ .(3)

Lemma 2.1 ([23]). Let X be a Banach function space. If M is bounded on
X ′, then

sup
Q

1

|Q|
∥χQ∥X∥χQ∥X′ < ∞.

Remark 2.2 ([23]). Lemma 2.1 also holds ifM is bounded onX because Banach
function space is reflexive by Lorentz–Luxemburg Theorem [3, p. 10], that is,
(X ′)′ = X.

For more information about the theory of Banach function space, see for
instance [3] and [10].

2.2. Weights and extrapolation

By a weight we mean a nonnegative and locally integrable function. There
is a vast literature on weights and weighted norm inequalities. We refer the
readers to [15] and their references for complete informations.

Central to the study of weights are the so-called Ap weights, 1 ≤ p ≤ ∞.
When 1 < p < ∞, we say w ∈ Ap if for every cube Q,(

1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)1−p′
dx

)p−1

≤ C < ∞,

where p′ is the conjugate of p which satisfies 1/p + 1/p′ = 1. It is obtained

directly from the definition that w ∈ Ap if and only if w1−p′ ∈ Ap′ .
We say that w ∈ A1 if Mw(x) ≤ Cw(x) for a.e. x. If 1 ≤ p < q < ∞, then

Ap ⊂ Aq. Hence it is natural to define A∞ class by the union of the all the Ap

classes, namely;

A∞ :=
⋃
p>1

Ap.

Hereafter, by F we will mean a family of pairs (f, g) of nonnegative, mea-
surable functions that are not identically zero. In [10], the authors proved an
extrapolation theorem as follows:

Theorem 2.3 ([10], Theorem 4.6). Let B be a Muckenhoupt basis and X be
a Banach function space. Suppose that for some p0, 0 < p0 < ∞, and every
weight w ∈ A1,B(∫

Rn

f(x)p0w(x)dx

)
≤ c

(∫
Rn

g(x)p0w(x)dx

)
, (f, g) ∈ F .(4)
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If there exists q0, p0 ≤ q0 < ∞, such that X
1
q0 is a Banach function space and

MB is bounded on (X
1
q0 )′, then

∥f∥X ≤ c∥g∥X , (f, g) ∈ F .

3. Proof of the theorems

In this section, we will prove our theorems. We first give an estimate of
Coifman–Fefferman’s type for commutators of the Hardy–Littlewood maximal
operator.

According to a result of Coifman and Fefferman [5], singular integral oper-
ator T and the Hardy–Littlewood maximal operator M satisfy the following
estimate ∫

Rn

|Tf(x)|pw(x)dx ≤ C[w]pA∞

∫
Rn

[Mf(x)]
p
w(x)dx

for every function f for which the left hand side is finite, where 0 < p < ∞ and
w ∈ A∞.

In 1997, Pérez [31] extended the result to commutators of singular inte-
grals. Actually, this kind of estimates also hold for commutators of the Hardy–
Littlewood maximal operator. Precisely, we have the following result.

Theorem 3.1. Let 0 < p < ∞, w ∈ A∞ and b ∈ BMO(Rn). Then there is a
positive constant Cb,w, depending on b and w, such that∫

Rn

[Mbf(x)]
p
w(x)dx ≤ Cb,w

∫
Rn

[M2f(x)]pw(x)dx.(5)

The proof of this type of estimates for commutators is by now standard. We
refer the readers to [31, Theorem 1], [32, Theorem 1.1] and [37, Theorem 1.1].

The second author proved the multilinear case for Theorem 3.1 in [38, The-
orem 3.5] from which Theorem 3.1 can be deduced directly.

Moreover, we would like to note that inequality (5) is essentially implied,
although not be directly stated, in the proof of Theorem 1.1 in [37]. Here we
give the idea of the proof but omit the details. We let v ∈ C∞[0,+∞) such
that |v′(t)| ≤ Ct−1 and χ[0,1](t) ≤ v(t) ≤ χ[0,2](t) and set

M̃f(x) = sup
ε>0

∫
Rn

∣∣∣∣ 1εn v
(
|x|
ε

)
f(y)

∣∣∣∣ dy
and

M̃bf(x) = sup
ε>0

∫
Rn

∣∣∣∣ 1εn v
(
|x|
ε

)
[b(x)− b(y)]f(y)

∣∣∣∣ dy.
The arguments for V ∗

b f in [37] can be followed step by step in our case for

M̃bf almost without any changes. Then (5) follows from M̃bf ≈ Mbf .
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Proof of Theorem 1.2. We will make use of Theorem 2.3 for the pair (Mbf,M
2f)

with p0 = q0 = 1, and note that Theorem 3.1 holds for all w ∈ A1 ⊂ A∞. We
get the ‘if’ part of Theorem 1.2 by using the boundedness of M on X:

∥Mbf∥X ≤ c∥M2f∥X
≤ c∥f∥X .

Suppose that Mb is bounded on X. We will prove b ∈ BMO(Rn). For any cube
Q0 and x ∈ Q0, we have obviously,

Mb(χQ0
)(x) ≥ |b(x)− bQ0

|χQ0
(x) for x ∈ Rn.

Then, by (3) and the boundedness of Mb on X, we get

1

|Q0|

∫
Q0

|b(x)− bQ0
| dx =

1

|Q0|

∫
Q0

|b(x)− bQ0
|χQ0

(x) dx

≤ 1

|Q0|

∫
Q0

Mb(χQ0)(x)dx

=
1

|Q0|

∫
Rn

Mb(χQ0
)(x)χQ0

(x)dx

≤ 1

|Q0|
∥Mb(χQ0

)∥X∥χQ0
∥X′

≤ 1

|Q0|
∥χQ0∥X∥χQ0∥X′

≤ C,

where we can use Remark 2.2 in the last step since M is bounded on X.
Since Q0 is arbitrary cube, taking supremum over all cubes Q0 ⊂ Rn, we have
b ∈ BMO(Rn). □

Proof of Theorem 1.3. (i) ⇒ (ii). The following pointwise estimate for any
locally integrable function b holds:

|[M, b]f(x)| ≤ Mbf(x) + 2b−(x)Mf(x),(6)

(see [1, Lemma 3.2]). Applying Definition 2(ii) and (i), hypothesis and Theorem
1.2, respectively, we have

∥[M, b]f∥X ≤ c∥Mbf + b−Mf∥X
≤ c∥Mbf∥X + ∥b−∥∞∥Mf∥X
≤ c∥f∥X .

(ii) ⇒ (iii). For any Q ⊂ Rn, it is easy to check that for any x ∈ Q,

M(χQ)(x) = MQ(χQ)(x) = χQ(x),

M(bχQ)(x) = MQ(bχQ)(x) = MQ(b)(x),
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see [2, p. 3331] and (2.4) in [40]. Then it follows from the boundedness of [M, b]
on X that

∥(b−MQ(b))χQ∥X = ∥bχQ(x)−MQ(b)χQ(x)∥X
≤ ∥bM(χQ)−M(bχQ)∥X
= ∥[M, b](χQ)∥X
≤ c ∥χQ∥X .

Then, by Definition 2(iv) ∥χQ∥X and taking supremum over all cubes Q ⊆ Rn,
we get

sup
Q

∥(b−MQ(b))χQ∥X
∥χQ∥X

≤ C < ∞.(7)

(iii) ⇒ (i). From (3), Remark 2.2 and Lemma 2.1, we have

1

|Q|

∫
Q

|b(x)−MQ(b)(x)|dx =
1

|Q|

∫
Rn

|b(x)−MQ(b)(x)|χQ(x)dx(8)

≤ 1

|Q|
∥(b−MQ(b))χQ∥X ∥χQ∥X′

≤ c

|Q|
∥χQ∥X∥χQ∥X′

≤ c.

Then, we achieve b ∈ BMO(Rn) and b− ∈ L∞(Rn) by Lemma 1.1. □

Proof of Theorem 1.4. (i) ⇒ (ii). The following inequality can be obtained,
see [41, p. 1382]

|[M#, b](f)(x)| ≤ M#(2b−f)(x) + 2b−(x)M#f(x) + |[M#, |b|](f)(x)| .

This, together with M#f ≤ 2Mf and |[M#, |b|](f)| ≤ 2M|b|f (see (3.2) in [41])
gives

|[M#, b](f)(x)| ≤ cMb(f)(x) + b−(x)Mf(x) +M(b−f)(x).

Then by using Definition 2(ii) and (i), Theorem 1.2 and the boundedness of M
on X, we get

∥[M#, b](f)∥X ≤ c ∥Mbf∥X + ∥b−∥∞ ∥Mf∥X
≤ c ∥f∥X .

(ii) ⇒ (iii). For all x ∈ Rn, it is calculated that (M#(χQ)(x))χQ(x) =
1

2
(χQ)(x) (see [2, p. 3333] for details). Note that χQ(x) ∈ X by Definition

2(iv). Then using the hypothesis (ii), we get

∥(b− 2M#(bχQ))χQ∥X =

∥∥∥∥2(1

2
bχQ −M#(bχQ)

)
χQ

∥∥∥∥
X

=
∥∥2 (bM#(χQ)χQ −M#(bχQ)

)
χQ

∥∥
X
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=
∥∥2 (bM#(χQ)−M#(bχQ)

)
χQ

∥∥
X

≤ 2
∥∥[M#, b](χQ)

∥∥
X

≤ C∥χQ∥X .

Hence the conclusion is proved.
(iii) ⇒ (i). Bastero, Milman and Ruiz obtained the following inequality (see

[2, p. 3333]):

|bQ| ≤ 2M#(bχQ)(x), x ∈ Q.(9)

Now, we can achieve that b ∈ BMO(Rn). Indeed, let E = {x ∈ Q : b(x) ≤ bQ}
and F = {x ∈ Q : b(x) > bQ}. Then∫

E

|b(t)− bQ|dt =
∫
F

|b(t)− bQ|dt.

Since for any x ∈ E, b(x) ≤ bQ ≤ |bQ| ≤ 2M#(bχQ)(x). Then

|b(x)− bQ| ≤ |b(x)− 2M#(bχQ)(x)| for any x ∈ E.

By (3), hypothesis (iii) and Lemma 2.1, we have

1

|Q|

∫
Q

|b(x)− bQ|dx =
2

|Q|

∫
E

|b(x)− bQ|dx

≤ 2

|Q|

∫
E

|b(x)− 2M#(bχQ)(x)|dx

≤ 2

|Q|

∫
Q

|b(x)− 2M#(bχQ)(x)|dx

≤ 2

|Q|

∫
Rn

|b(x)− 2M#(bχQ)(x)|χQ(x)dx

≤ 2

|Q|
∥∥(b− 2M#(bχQ))χQ

∥∥
X
∥χQ∥X′

≤ C

|Q|
∥χQ∥X∥χQ∥X′

≤ C.

This means that b ∈ BMO(Rn). To show that b− ∈ L∞(Rn), by (9), we get

2M#(bχQ)(x)− b(x) ≥ |bQ| − b(x) ≥ |bQ| − b+(x) + b−(x)

for x ∈ Q. Then

1

|Q|

∫
Q

|2M#(bχQ)(x)− b(x)|dx(10)

≥ 1

|Q|

∫
Q

(|bQ| − b+(x) + b−(x))dx

= |bQ| −
1

|Q|

∫
Q

b+(x)dx+
1

|Q|

∫
Q

b−(x)dx.
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On the other hand applying (3), hypothesis (iii) and Lemma 2.1 again, we
obtain

1

|Q|

∫
Q

|2M#(bχQ)(x)− b(x)|dx ≤ 2

|Q|
∥∥(b− 2M#(bχQ))χQ

∥∥
X
∥χQ∥X′

≤ C

|Q|
∥χQ∥X∥χQ∥X′

≤ C.

This, together with (10), gives

|bQ| −
1

|Q|

∫
Q

b+(x)dx+
1

|Q|

∫
Q

b−(x)dx ≤ C

Let |Q| → 0 with x ∈ Q, Lebesgue Differentiation Theorem assures that

C ≥ |b(x)| − b+(x) + b−(x) = 2b−(x)

and the desired result follows. Therefore, the proof is completed. □

4. Applications

Lebesgue spaces, weighted Lebesgue spaces, variable Lebesgue spaces, Or-
licz spaces and Musielak–Orlicz (generalized Orlicz) spaces are known as some
examples of Banach function spaces (see [27]). In this final section, basic defini-
tions and facts about Banach function space examples will be summarized and
applications on the boundedness results of commutators of maximal operators
and maximal commutators will be presented.

4.1. Weighted Lebesgue spaces

In this subsection, we apply Theorems 1.2 and 1.3 and 1.4 to the weighted
Lebesgue spaces. Given a weight w and 1 < p < ∞, we define the space Lp(w)
to be set of all measurable functions f such that

∥f∥Lp(w) =

(∫
Rn

|f(x)|pw(x)dx
) 1

p

< ∞.

Further, the Hardy–Littlewood maximal operator M is bounded on Lp(w) if
and only if w ∈ Ap (see [15, p. 400]). Moreover, it is easy to see that the Ap

condition is equivalent to

1

|Q|
∥χQ∥Lp(w)∥χQ∥Lp′ (w1−p′ ) < ∞

for all cubes Q.
Then Lp(w) is a Banach function space (see [10, p. 70]), and it is well known

that the associated space is Lp′
(w1−p′

).

Corollary 4.1. Let 1 < p < ∞ and w ∈ Ap. Then Mb is bounded from Lp(w)
to itself if and only if b ∈ BMO(Rn).
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Corollary 4.2. Let 1 < p < ∞ and w ∈ Ap. Then the following assertions
are equivalent:

(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) [M, b] is bounded on Lp(w).
(iii) There exists a constant c > 0 such that

sup
Q

∥(b−MQ(b))χQ∥Lp(w)

∥χQ∥Lp(w)
≤ c < ∞.

Corollary 4.3. Let 1 < p < ∞ and w ∈ Ap. Then the following assertions
are equivalent:

(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) [M#, b] is bounded on Lp(w).
(iii) There exists a constant c > 0 such that

sup
Q

∥(b− 2M#(bχQ))χQ∥Lp(w)

∥χQ∥Lp(w)
≤ c < ∞.

4.2. Variable Lebesgue spaces

Let p(·) : Rn → [1,∞) be a measurable function. The variable exponent
Lebesgue space Lp(·)(Rn) is defined by

Lp(·)(Rn) := {f ∈ M(Rn) :

∫
Rn

(
|f(x)|
λ

)p(x)

dx < ∞}

for some constant λ > 0. This set is a Banach space with respect to Luxemburg–
Nakano norm

∥f∥Lp(·)(Rn) := ∥f∥p(·) := inf

{
λ > 0 : m(f/λ, p)=

∫
Rn

(
|f(x)|
λ

)p(x)

dx ≤ 1

}
.

If a measurable function p(·) : Rn → [1,∞) satisfies

(11) 1 < p− := ess inf
x∈Rn

p(x), p+ := ess sup
x∈Rn

p(x) < ∞,

then the function p′(x) = p(x)/(p(x)− 1) is well defined and satisfies (11). For
a complete information of variable Lebesgue spaces see [7] and [12].

Denote by P(Rn) the set of all measurable functions p(·) : Rn → [1,∞) such
that (11) holds.

Theorem 4.4. Let p(·) ∈ P(Rn). Suppose further that p(·) satisfies the log-
Hölder continuity conditions

|p(x)− p(y)| ≤ C

− log|x− y|
, x, y ∈ Rn, |x− y| < 1/2,(12)

|p(x)− p(y)| ≤ C

log(e+ |x|)
, x, y ∈ Rn, |y| ≥ |x|.(13)

Then, the Hardy–Littlewood maximal operator is bounded on Lp(·)(Rn).
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Theorem 4.4 was proved by Cruz–Uribe, Fiorenza and Neugebauer [8]. If a
given function p(·) satisfies the conditions of Theorem 4.4, then we say p(·) ∈
P log(Rn).

Let B(Rn) be the set of all measurable functions p(·) ∈ P(Rn) such that M
is bounded on Lp(·)(Rn), that is, if p(·) ∈ P log(Rn), then p(·) ∈ B(Rn).

Lemma 4.5 ([11], see also [42]). Let p(·) ∈ P(Rn). Then the following asser-
tions are equivalent:

(i) p(·) ∈ B(Rn),
(ii) p′(·) ∈ B(Rn),
(iii) p(·)/r ∈ B(Rn) for some 1 < r < p−,
(iv) (p(·)/r)′ ∈ B(Rn) for some 1 < r < p−.

For p(·) ∈ B(Rn), Lp(·)(Rn) is a Banach function space (see [7, p. 73]) with

associated space Lp′(·)(Rn). Moreover it is known from [22] that

1

|Q|
∥χQ∥Lp(·)(Rn)∥χQ∥Lp′(·)(Rn) ≤ C

for all cubes Q in Rn.

Corollary 4.6. Let p(·) ∈ B(Rn). Then Mb is bounded from Lp(·)(Rn) to itself
if and only if b ∈ BMO(Rn).

Remark 4.7. Corollary 4.6 was first proved by second author and J. Wu in
[42, Theorem 3.1].

Corollary 4.8. Let p(·) ∈ B(Rn). Then the following assertions are equivalent:

(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) [M, b] is bounded on Lp(·)(Rn).
(iii) There exists a constant c > 0 such that

sup
Q

∥(b−MQ(b))χQ∥p(·)
∥χQ∥p(·)

≤ c < ∞.

Remark 4.9. Corollary 4.8 was first proved by second author and J. Wu in
[41, Theorem 1.2]. However, the authors have shown that this theorem is true
under the condition p(·) ∈ P log(Rn). Obviously, p(·) ∈ B(Rn) is weaker than
p(·) ∈ P log(Rn). So, Corollary 4.8 extends the Zhang’s result in [41, Theorem
1.2].

Corollary 4.10. Let p(·) ∈ B(Rn). Then the following assertions are equi-
valent:

(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) [M#, b] is bounded on Lp(·)(Rn).
(iii) There exists a constant c > 0 such that

sup
Q

∥(b− 2M#(bχQ))χQ∥p(·)
∥χQ∥p(·)

≤ c < ∞.
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Remark 4.11. Corollary 4.10 was first proved by second author and J. Wu in
[41, Theorem 1.3]. For similar reasons as in Remark 4.9, Corollary 4.10 extends
the Zhang’s result in [41, Theorem 1.3].

4.3. Orlicz spaces

A function Φ is called a Young function if it is continuous, nonnegative,
convex and strictly increasing on [0,∞) with Φ(0) = 0 and Φ(∞) = ∞.

The Orlicz space denoted by LΦ = LΦ(Rn) consists of all measurable func-
tion f : Rn → R such that for some λ > 0∫

Rn

Φ

(
|f(x)|
λ

)
dx < ∞.

When Φ is a Young function, LΦ(Rn) is a Banach space with respect to
norm

∥f∥Φ := inf

{
λ > 0 :

∫
Rn

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

Given a Young function Φ, the complementary function Φ̃ is defined by

Φ̃(t) = sup{ts− Φ(s) ; s ≥ 0}, t ∈ R.

The complementary function Φ̃ is also a Young function when Φ is a Young
function.

A Young function Φ is said to satisfy ∆2 condition (we shall write Φ ∈ ∆2)
if there exist constants k ≥ 0 and T ≥ 0 such that Φ(2t) ≤ kΦ(t) for all t ≥ T .

A Young function Φ is said to satisfy ∇2 condition, denoted Φ ∈ ∇2, if for
some c > 1, Φ(c t) ≥ 2cΦ(t) for all t > 0.

Also Φ ∈ ∆2 if and only if Φ̃ ∈ ∇2. For a complete information of Orlicz
spaces, see for instance [3], [26], [33].

Theorem 4.12 ([25]). M is bounded on LΦ(Rn) if and only if Φ ∈ ∇2.

Note that the Orlicz spaces LΦ(Rn) is a Banach function space with the

associated space LΦ̃(Rn) (see [7, p. 71]).

Corollary 4.13. Assume that M is bounded on both LΦ(Rn) and LΦ̃(Rn).
Then Mb is bounded from LΦ(Rn) to itself if and only if b ∈ BMO(Rn).

Remark 4.14. The boundedness ofM on both LΦ(Rn) and LΦ̃(Rn) is equivalent
to Φ ∈ ∆2 ∩∇2. It is known that Φ ∈ ∆2 ∩∇2 if and only if 1 < aΦ ≤ bΦ < ∞
(see [26]). It was proved in Corollary 2.3 in [13] that if b ∈ BMO(Rn) and
1 < aΦ ≤ bΦ < ∞, then Mb is bounded on LΦ(Rn). Corollary 4.13 also shows
that the b ∈ BMO(Rn) is necessary and sufficient condition for the boundedness
of Mb on LΦ(Rn).

Corollary 4.15. Assume that M is bounded on both LΦ(Rn) and LΦ̃(Rn).
Then the following assertions are equivalent:
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(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) [M, b] is bounded on LΦ(Rn).
(iii) There exists a constant c > 0 such that

sup
Q

∥(b−MQ(b))χQ∥Φ
∥χQ∥Φ

≤ c < ∞.

Corollary 4.16. Assume that M is bounded on both LΦ(Rn) and LΦ̃(Rn).
Then the following assertions are equivalent:

(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) [M#, b] is bounded on LΦ(Rn).
(iii) There exists a constant c > 0 such that

sup
Q

∥(b− 2M#(bχQ))χQ∥Φ
∥χQ∥Φ

≤ c < ∞.

4.4. Musielak–Orlicz (generalized Orlicz) spaces

Let φ : [0,∞) → [0,∞] be an increasing function such that φ(0) = lim
t→0

φ(t) =

0, lim
t→∞

φ(t) = ∞. Such a function φ is called a Φ-prefunction. Furthermore,

we say that φ is

(1) a weak Φ-function, denoted by φ ∈ Φw, if, additionally, t → φ(t)
t is

almost increasing on (0,∞);
(2) a Φ-function, denoted by φ ∈ Φ, if, additionally, it is left continuous and

convex;
(3) a strong Φ-function, denoted by φ ∈ Φs, if, additionally, it is continuous

on R and convex.
While studies on Φ-functions are frequently encountered, sometimes weak

and sometimes strong Φ-functions are used for convenience. In doing so, the
following result is used:

Lemma 4.17 ([18], Proposition 2.3). Every weak Φ-function is equivalent to
a strong Φ-function.

To define the generalized Orlicz spaces, we extend the definition of Φ-
functions to depend on the location in space.

Definition 3. The set Φ(Ω) of generalized Φ-functions consists of those func-
tions φ : Ω× [0,∞) → [0,∞] such that

(1) φ(y, ·) ∈ Φ for every y ∈ Ω;
(2) φ(·, t) ∈ M(Ω) for every t ≥ 0.

The families Φs(Ω) and Φw(Ω) are defined analogously.

Weak, strong, and generalized Φ-functions will all be written as Φ-functions
for simplicity. We can now define generalized Orlicz spaces. We can take weak
Φ-functions in our definitions by Lemma 4.17, though in the references above
these definitions are made for Φ-functions.
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Definition 4. Let φ ∈ Φw(Rn) and define semimodular ρφ(·) for any measur-
able function f by

ρφ(·)(f) :=

∫
Rn

Φ(x, |f(x)|)dx.

The Musielak–Orlicz spaces also called generalized Orlicz spaces Lφ(·)(Rn) is
defined as the set

Lφ(·)(Rn) :=

{
f ∈ M(Rn) : lim

λ→0
ρφ(·)(λf) = 0

}
equipped with the norm (Luxemburg–Nakano norm)

∥f∥φ(·)(Rn) := ∥f∥φ(·) := inf

{
λ > 0 : ρφ(·)

(
|f(x)|
λ

)
≤ 1

}
.

For more complete information, see for instance [18] and [9].
Note that the Musielak–Orlicz spaces Lφ(·)(Rn) is a Banach function space

(see [9, Lemma 3.2]) with the associated space (Lφ(·))′(Rn) (see [17, Theorem
1.1]).

We now give a family of hypotheses that are closely related to the bound-
edness of the maximal operator on generalized Orlicz spaces.

Definition 5. Given φ ∈ Φw(Rn) and 0 < p < ∞, we define the following
conditions:

(A0) φ−1(x, 1) ≈ 1 uniformly in x ∈ Ω.
(A1) There exists β ∈ (0, 1) such that βφ−1(x, t) ≤ φ−1(y, t) for every

t ∈
[
1, 1

|x−y|n

]
and every x, y ∈ Ω with |x− y| ≤ 1.

(A2) Lφ(·)(Rn)∩L∞(Rn)=Lφ∞(Rn)∩L∞(Rn), with φ∞(t) := lim sup
|x|→∞

φ(x, t)

and φ∞ ∈ Φw.
(Inc)p s 7→ s−pφ(x, s) is increasing for all x ∈ Ω.

(Dec)p s 7→ s−pφ(x, s) is decreasing for all x ∈ Ω.

(aInc)p s 7→ s−pφ(x, s) is almost increasing uniformly for all x ∈ Ω.

(aDec)p s 7→ s−pφ(x, s) is almost decreasing uniformly for all x ∈ Ω.

We say that φ satisfies (aInc) if it satisfies (aInc)p for some p > 1 and (aDec)

if it satisfies (aDec)p for some p < ∞.

Theorem 4.18 ([19], Theorem 4.6). Let φ ∈ Φw(Rn) satisfy the conditions
(A0)–(A2) and (aInc). Then the maximal operator M is bounded from
Lφ(·)(Rn) to Lφ(·)(Rn).

Corollary 4.19. Assume that M is bounded on both Lφ(·)(Rn) and (Lφ(·))′(Rn).
Then Mb is bounded from Lφ(·)(Rn) to itself if and only if b ∈ BMO(Rn).

Corollary 4.20. Assume that M is bounded on both Lφ(·)(Rn) and (Lφ(·))′(Rn).
Then the following assertions are equivalent:
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(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) [M, b] is bounded on Lφ(·)(Rn).
(iii) There exists a constant c > 0 such that

sup
Q

∥(b−MQ(b))χQ∥φ(·)

∥χQ∥φ(·)
≤ c < ∞.

Corollary 4.21. Assume that M is bounded on both Lφ(·)(Rn) and (Lφ(·))′(Rn).
Then the following assertions are equivalent:

(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) [M#, b] is bounded on Lφ(·)(Rn).
(iii) There exists a constant c > 0 such that

sup
Q

∥(b− 2M#(bχQ))χQ∥φ(·)

∥χQ∥φ(·)
≤ c < ∞.
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