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CHARACTERIZATIONS OF WEAKLY
PRECOMPACTNESS OF OPERATORS
ACTING BETWEEN BANACH SPACES

Hi Ja Song

Abstract. We give an extensive presentation of results about the

properties of Banach space operators with weakly precompact ad-
joints. Further we give a description of operators having weakly

precompact adjoints on abstract continuous function spaces

1. Introduction

We point out that in general the adjoint of a weakly precompact op-
erator need not be weakly precompact. For an easy example, take any
bounded linear surjection T : `1 → c0. Since c0 does not contain a copy
of `1, T is weakly precompact. But T ∗ : `1 → `∞ is an isomorphism
and thus T ∗ fails to be weakly precompact.

Of course the question arises whether every operator having a weakly
precompact adjoint must itself be weakly precompact. It is natural to
ask about the nature of weakly precompact operators acting between
Banach spaces.

In this paper we survey geometric structures of Banach space oper-
ators with weakly precompact adjoints. Here, we present C. Abbott,
E. Bator, R. Bilyeu and P. Lewis’ approach to this subject (cf. [1], [2]).

We first handle the above question. And then we compare operators
whose duals are weakly precompact with unconditionally converging
operators.

Next we characterize operators with weakly precompact adjoints in
terms of the weak Radon-Nikodym property.
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Next we provide the operator version of Josefson-Nissenzweig the-
orem [8]. And then we consider a result due to W. Johnson and H.
Rosenthal [10] in the framework of operators. As a corollary we obtain
that the adjoint of a weakly precompact operator with a Grothendieck
space domain is always weakly precompact.

We turn to the study of operators having weakly precompact ad-
joints defined on the space C(K, X) of all continuous functions from a
compact Hausdorff space K into a Banach space X in connection with
the above problems.

We discuss the relationship between operators having weakly pre-
compact adjoints defined on the space C(K, X) and their representing
measures. And then we characterize operators having weakly precom-
pact adjoints defined on the space C(K, X) under the hypothesis that
the dual of a Banach space X contains no isomorphic copy of `1.

Finally we find usable conditions on an operator defined on the space
C(K, X) which imply that X has the weak* Radon-Nikodym property.

2. Definitions and Notation

We present some of the definitions and notation to be used in this
paper. Throughout this paper X and Y denote Banach spaces with
duals X∗ and Y ∗ respectively.

A subset E of a Banach space X is called weakly precompact if every
bounded sequence in E has a weakly Cauchy subsequence.

We say that a bounded sequence (xn) of a Banach space X is a copy
of (or is equivalent to ) the usual `1-basis if there exists a constant δ > 0
such that ‖

∑
akxk‖ ≥ δ ·

∑
|ak| for all finitely non-zero sequences (ak)

of real numbers.
H. Rosenthal’s theorem [14] states that a bounded subset E of a

Banach space X is weakly precompact if and only if it contains no
copy of the usual `1-basis.
Notation. (1) The adjoint operator of an operator T is denoted by T ∗.

(2) The closed unit ball of X is denoted by BX .
(3) The closed unit sphere of X is denoted by SX .
(4) The closed linear span of the sequence (xn) is denoted

by [xn].
(5) B(X, Y ) denotes the set of all bounded linear operators
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from X into Y .
(6) C(K, X) denotes the space of all continuous X-valued

functions defined on a compact Hausdorff space K.
An operator T ∈ B(X, Y ) is weakly precompact if T (BX) is weakly

precompact in Y .
An operator T ∈ B(X, Y ) is unconditionally converging if T maps

weakly unconditionally Cauchy series into unconditionally convergent
series.

Let (Ω,
∑

, µ) be a finite measure space. A function f : Ω → X is
scalarly measurable if the scalar function x∗f(·) is measurable for each
x∗ ∈ X∗. A function f : Ω → X is called Pettis integrable if it is
scalarly integrable and if for each measurable set A in

∑
, there exists

an element xA of X such that x∗(xA) =
∫

A
x∗f dµ for each x∗ ∈ X∗.

In this case we write xA = Pettis−
∫

A
f dµ. The Pettis norm of a Pettis

integrable function f is defined to be sup {
∫
Ω
|x∗f | dµ : x∗ ∈ BX∗}.

A Banach space X has the weak Radon-Nikodym property if for
every finite measure space (Ω,

∑
, µ), every bounded linear operator T :

L1(µ) → X is Pettis representable, i.e., there exists a Pettis integrable
function φ : Ω → X such that T (f) = Pettis −

∫
Ω

fφ dµ for every
f ∈ L1(µ).

A Banach space X has the weak* Radon-Nikodym property if for
every finite measure space (Ω,

∑
, µ) and for every bounded linear

operator T : L1(µ) → X, there exists a Pettis integrable function
φ : Ω → X∗∗ such that T (f) = Pettis−

∫
Ω

fφ dµ for every f ∈ L1(µ).
Let (ϕn) be a sequence of Pettis integrable functions from a prob-

ability space (Ω,F , P ) into X and let (Fn) be an increasing sequence
of sub-σ-algebras of F . The sequence (ϕn) is said to be a martin-
gale relative to (Fn) if each ϕn is Fn-scalarly measurable and Pettis-∫

A
ϕn dP =Pettis-

∫
A

ϕn+1 dP for each A ∈ Fn and each n ∈ bN .
Let T ∈ B(X, Y ). We say that a sequence (y∗n) in Y ∗ is T -weak*

null if for each x ∈ X, limn→∞〈Tx, y∗n〉 = 0.
A Banach space X with the property that weak* and weak sequential

convergence in X∗ coincide is called a Grothendieck space.
An operator ideal U is said to be separably determined provided

that an operator T : X → Y belongs to U(X, Y ) if and only if its
restriction to any separable subspace E of X belongs to U(E, Y ).

The Riesz representation theorem tells us that if T ∈ B(C(K, X), Y )
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then there is a unique finitely additive set function m of bounded semi-
variation defined on the σ-algebra

∑
of Borel sets of K with values in

B(X, Y ∗∗) such that T (f) =
∫

f dm for f ∈ C(K, X). We refer to the
set function m as the representing measure for T .

Let UX(
∑

) denote the collection of all X-valued functions f over
the σ-algebra

∑
of Borel sets of K for which f is the uniform limit of

a sequence (fn) of X-valued simple functions. The expression
∫

f dm
makes sense for f ∈ UX(

∑
) and hence this integral defines a natural

extension of T to UX(
∑

). We denote this extension by T̂ .
For a set A ∈

∑
, we put m̃(A) = supI ‖

∑
i∈I m(Ai) xi‖, where

the supremum is taken over all finite collections {Ai}i∈I of pairwise
disjoint members of

∑
such that ∪i∈IAi = A and over all finite col-

lections {xi}i∈I of elements of BX . The number m̃(A) is called the
semivariation of m on the set A.

We say that m is strongly bounded if limn→∞ m̃(An) = 0 whenever
(An) is a sequence of disjoint sets from

∑
.

An operator T : C(K, X) → Y is said to be strongly bounded pro-
vided that its representing measure m is strongly bounded.

For every z ∈ Y ∗, m defines a finitely additive set function mz :∑
→ X∗ by 〈mz(A), x〉 = 〈m(A)x, z〉, A ∈

∑
, x ∈ X. The variation

of mz is the extended nonnegative function |mz| whose value on a
set A ∈

∑
is given by |mz|(A) = supI

∑
i∈I ‖mz(Ai)‖, where the

supremum is taken over all finite collections {Ai}i∈I of pairwise disjoint
members of

∑
such that ∪i∈IAi = A. It is easy to check that m̃(A) =

sup {|mz|(A) : z ∈ BY ∗}, A ∈
∑

.

3. Results

We begin by proving that every operator having a weakly precom-
pact adjoint must itself be weakly precompact.

Theorem 1. If the operator T : X → Y has a weakly precompact
adjoint then T is weakly precompact.

Proof. We argue by contradiction. Suppose that T : X → Y is
not weakly precompact. Then X contains an isomorphic copy of `1 on
which T acts as an isomorphism. Let J : `1 → X be an isomorphic
embedding. Then TJ : `1 → Y is an isomorphism. Therefore (TJ)∗ :
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Y ∗ → `∞ is a surjection and so J∗T ∗(BY ∗) ⊇ δB`∞ for some δ > 0.
Since T ∗ is weakly precompact, the same is true of J∗T ∗. This allows us
to have that `∞ contains no isomorphic copy of `1. This contradiction
proves the assertion. �

We investigate the link between an operator with weakly precompact
adjoint and an unconditionally converging operator.

Theorem 2. If the operator T : X → Y has a weakly precompact
adjoint then T is unconditionally converging.

Proof. Arguing contrapositively, we assume that T : X → Y is
not unconditionally converging. A result due to C. Bessaga and A.
Pelczynski [3] assures us that there is a subspace E of X isomorphic
to c0 such that the restriction of T to E is an isomorphism. Let J :
c0 → E ⊂ X be an isomorphic embedding. Then TJ : c0 → Y is
an isomorphism. Consequently (TJ)∗ : Y ∗ → `1 is a surjection and
thus J∗T ∗(BY ∗) ⊇ δB`1 for some δ > 0. This leads us to have that
T ∗(BY ∗) cannot be weakly precompact in X∗, i.e., T ∗ fails to be weakly
precompact. �

Using the factorization construction of W. Davis, T. Figiel, W. John-
son and A. Pelczynski [5], we establish the following useful characteri-
zation of operators whose duals are weakly precompact.

Theorem 3. The following statements about an operator T : X →
Y are equivalent.

(i) T ∗ : Y ∗ → X∗ is weakly precompact.
(ii) T ∗∗ : X∗∗ → Y ∗∗ factors through a Banach space with the

weak Radon-Nikodym property.

Proof. (i) ⇒ (ii). The hypothesis (i) informs us that T ∗(BY ∗) is
weakly precompact in X∗. Let Pn be the gauge of the set Un =
2n T ∗(BY ∗) + 2−nBX∗ for n = 1, 2, · · · . Define, for x∗ ∈ X∗, |||x∗||| =
(
∑∞

n=1 Pn(x∗)2)1/2, let V = {x∗ ∈ X∗, |||x∗||| < ∞}. We deduce from
lemma 1 of [5] that the inclusion map J : V → X∗ is continuous and BV

is weakly precompact. Note that if y∗ ∈ BY ∗ then 2n T ∗y∗ ∈ Un and
hence Pn(T ∗y∗) < 2−n, n = 1, 2, · · · . This gives that if ‖y∗‖ ≤ 1 then
|||T ∗y∗|||2 =

∑∞
n=1 Pn(T ∗y∗)2 < ∞. So the map S : Y ∗ → V given by
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Sy∗ = T ∗y∗, y∗ ∈ Y ∗, is a bounded linear operator. Certainly T ∗ = JS

and thus T ∗∗ admits a factorization T ∗∗ : X∗∗ J∗−→ V ∗
S∗−→ Y ∗∗. Since

V contains no isomorphic copy of `1, Janicka’s theorem [9] steps in to
ensure that V ∗ has the weak Radon-Nikodym property.
(ii) ⇒ (i). Assume that T ∗ is not weakly precompact. We choose
a sequence (T ∗y∗n) in T ∗(BY ∗) that is a copy of the usual `1-basis
(en). We denote by M the closed linear span of the sequence (T ∗y∗n).
Then the map S : M → `1 given by S(T ∗y∗n) = en is an isomor-
phism. Let (e∗n) be the usual `∞-basis. By setting xn = S∗(e∗n),
we get 〈xn, T ∗y∗k〉 = 〈e∗n, ST ∗y∗k〉 = 〈e∗n, ek〉. We consider a map
fn : [0, 1] → M∗ which is defined by fn(·) = ‖S‖−1

∑n
k=1 rk(·)xk,

where rk is the k-th Rademacher function. It is plain that (fn) is
a martingale relative to the dyadic partitions of the interval [0, 1].
We use this sequence to define an operator R : L1[0, 1] → M∗ via
R(g) = limn

∫
gfn dλ for all g ∈ L1[0, 1], where λ is Lebesgue measure

on [0, 1]. Since L1[0, 1] has the lifting property, there exists an oper-
ator R̂ : L1[0, 1] → X∗∗ such that R = i∗R̂ and ‖R̂‖ = ‖R‖, where
i : M → X∗ is the natural injection. If πn denotes the dyadic partition
of [0, 1] into intervals of length 1/2n, then the functions gn : [0, 1] →
X∗∗ defined by gn(·) =

∑
A∈πn

R̂(χA)
λ(A) χA(·) form a martingale satisfy-

ing 〈fn(·), x∗〉 = 〈gn(·), x∗〉 for all x∗ ∈ M , and supn ‖fn‖ = supn ‖gn‖.
Hence gn([0, 1]) ⊂ BX∗∗ and so (T ∗∗gn) is an Y ∗∗-valued martingale
with T ∗∗gn([0, 1]) ⊂ T ∗∗(BX∗∗). On account of hypothesis (ii), we in-
voke theorem 5 of [11] to infer that (T ∗∗gn) converges with respect to
the Pettis norm. On the other hand, estimating the Pettis norm of
T ∗∗gn+1 − T ∗∗gn, we obtain

sup {
∫
|〈z, T ∗∗gn+1 − T ∗∗gn〉| dλ : z ∈ Y ∗∗∗, ‖z‖ ≤ 1}

≥
∫
|〈T ∗∗gn+1 − T ∗∗gn, y∗n+1〉| dλ

=
∫
|〈fn+1 − fn, T ∗y∗n+1〉| dλ = ‖S‖−1

∫
|rn+1| dλ = ‖S‖−1.

As a result (T ∗∗gn) is not a Cauchy sequence with respect to the Pettis
norm. This contradiction shows that T ∗ is weakly precompact. �
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In the following we treat Josefson-Nissenzweig theorem [8] in the
framework of operators.

Proposition 1. Let T : X → Y be an operator. Suppose Y ∗

contains a copy of `1 but that no T -weak* null sequence in Y ∗ is
equivalent to the usual `1-basis. Then T is not weakly precompact.

Proof. Suppose (y∗n) is a sequence in BY ∗ equivalent to the usual
`1-basis. Define δ(y∗n) = sup {limn sup |〈Tx, y∗n〉| : ‖x‖ = 1}. Our hy-
pothesis guarantees that (y∗n) is not T -weak* null and hence δ(y∗n) > 0.
Set δ = δ(y∗n). Let ε > 0 be given. There is an x1 ∈ SX and an infinite
set N1 in N such that for any n ∈ N1, 〈Tx1, y

∗
n〉 < −δ + ε. Suppose

0 < ε′ < ε/3. Partition N1 into two disjoint infinite subsets enumer-
ated by the increasing sequences (nk) and (mk) of positive integers.
The sequence ( 1

2 (y∗nk
− y∗mk

)) is a normalized `1-block of (y∗n). Thus
there is an x2 ∈ SX and an infinite set of k for which

(1) 〈Tx2,
1
2
(y∗nk

− y∗mk
)〉 > δ − ε′.

Of course, (y∗nk
) and (y∗mk

) are normalized `1-blocks of (y∗n) which for
all but finitely many k must satisfy

(2) |〈Tx2, y
∗
nk
〉|, |〈Tx2, y

∗
mk
〉| < δ + ε′.

Suppose k satisfies (1)and (2) but 〈Tx2, y
∗
nk
〉 ≤ δ−3ε′. Then we would

have

δ − ε′ <
1
2
(〈Tx2, y

∗
nk
〉 − 〈Tx2, y

∗
mk
〉) <

1
2
(δ − 3ε′ + δ + ε′) = δ − ε′.

This contradiction proves that 〈Tx2, y
∗
nk
〉 > δ − 3ε′ > δ − ε for those k

enjoying the above estimates (1) and (2). Now suppose k satisfies (1)
and (2) but |〈Tx2, y

∗
mk
〉| ≥ −δ + 3ε′. Then we would have

δ − ε′ <
1
2
(〈Tx2, y

∗
nk
〉 − 〈Tx2, y

∗
mk
〉) <

1
2
(δ + ε′ + δ − 3ε′) = δ − ε′.

This contradiction yields that 〈Tx2, y
∗
mk
〉 < −δ + 3ε′ < −δ + ε for

those k enjoying the above estimates (1) and (2). We see that the sets
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N2 = {nk : 〈Tx2, y
∗
nk
〉 > δ − ε} and N3 = {mk : 〈Tx2, y

∗
mk
〉 < −δ + ε}

are infinite disjoint subset of N1. Let 0 < ε′ < ε/7. We can de-
compose N2 into two disjoint infinite subsets which we enumerate as
increasing sequences (nk(1)) and (nk(2)) of positive integers and simi-
larly decompose N3 into sequences (mk(1)) and (mk(2)).The sequence
( 1
4 (y∗nk(1) − y∗nk(2) + y∗mk(1) − y∗mk(2))) is a normalized `1-block of (y∗n).

Therefore there is an x3 ∈ SX such that for infinitely many k,

(3) 〈Tx3,
1
4
(y∗nk(1) − y∗nk(2) + y∗mk(1) − y∗mk(2))〉 > δ − ε′.

Of course, each of the sequences (y∗nk(1)), (y∗nk(2)), (y∗mk(1)), and (y∗mk(2))
are normalized `1-blocks of (y∗n). So for all but a finite number of k we
must have

(4) |〈Tx3, y
∗
nk(1)〉|, |〈Tx3, y

∗
nk(2)〉|, |〈Tx3, y

∗
mk(1)〉|, |〈Tx3, y

∗
mk(2)〉| < δ+ε′.

Suppose k satisfies (3) and (4) yet 〈Tx3, y
∗
nk(1)〉 ≤ δ − 7ε′. Then we

would have

δ−ε′ <
1
4
(〈Tx3, y

∗
nk(1)〉−〈Tx3, y

∗
nk(2)〉+〈Tx3, y

∗
mk(1)〉−〈Tx3, y

∗
mk(2)〉)

<
1
4
(δ − 7ε′ + δ + ε′ + δ + ε′ + δ + ε′) = δ − ε′.

This contradiction shows that 〈Tx3, y
∗
nk(1)〉 > δ−7ε′ > δ−ε for those k

satisfying the above estimates (3) and (4). In a similar way, we derive
that 〈Tx3, y

∗
nk(2)〉 < −δ + ε, 〈Tx3, y

∗
mk(1)〉 > δ− ε, and 〈Tx3, y

∗
mk(2)〉 <

−δ + ε for those k satisfying (3) and (4). We see that the sets N4 =
{nk(1) : 〈Tx3, y

∗
nk(1)〉 > δ − ε} and N5 = {nk(2) : 〈Tx3, y

∗
nk(2)〉 <

−δ + ε} are disjoint infinite subsets of N2, and the sets N6 = {mk(1) :
〈Tx3, y

∗
mk(1)〉 > δ − ε} and N7 = {mk(2) : 〈Tx3, y

∗
mk(2)〉 < −δ + ε} are

disjoint infinite subsets of N3.
We continue in this fashion. Letting Ωn = {y∗k : k ∈ Nn}, we get

a tree of subsets of BY ∗ . Furthermore, (Txn) has been so selected
from T (SX) that if 2n−1 ≤ k < 2n, then (−1)k〈Txn, y∗〉 > δ − ε for
all y∗ ∈ Ωk. We summon up Pelczynski’s result [12] to conclude that
(Txn) is a copy of the usual `1-basis. This means that T is not weakly
precompact. �
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The proof of our proposition given below is nearly identical to the
proof of proposition 1.

Proposition 2. Let T : X → Y be an operator. Suppose T ∗ :
Y ∗ → X∗ is not weakly precompact but that no weak* null sequence
in T ∗(BY ∗) is equivalent to the usual `1-basis. Then T is not weakly
precompact.

Proof. Since T ∗ is not weakly precompact, we find a sequence (T ∗y∗n)
in T ∗(BY ∗) that is a copy of the usual `1-basis. Define δ(y∗n) =
sup {limn sup |〈Tx, y∗n〉| : ‖x‖ = 1}. Our hypothesis ensures that (T ∗y∗n)
is not weak* null and so δ(y∗n) > 0. The remaining assertions are es-
tablished by arguing exactly as in the proof of proposition 1. �

Theorem 4. If T : X → Y is not a compact operator then there
exists a T -weak* null sequence (y∗n) in BY ∗ such that limn inf ‖T ∗y∗n‖ >
0.

Proof. Suppose that in T ∗(BY ∗), weak* null sequences are norm
null. Then either T ∗(BY ∗) contains a copy of the usual `1-basis or it
does not. If not, then each sequence in T ∗(BY ∗) has a weakly Cauchy
subsequence. Thus each sequence in T ∗(BY ∗) has a weak* convergent
subsequence which is norm convergent in view of our supposition. This
means that the operator T ∗, and so T , is compact. This contradiction
proves the assertion.

We pass now to the case where T ∗(BY ∗) contains a copy of the usual
`1-basis. Then our supposition ensures that no weak* null sequence
in T ∗(BY ∗) can be equivalent to the usual `1-basis. An appeal to
proposition 2 reveals that T is not weakly precompact. We pick a
sequence (Txn) in T (BX) that is a copy of the usual `1-basis (e∗n).
We consider the bounded linear operator R : [Txn] → L∞[0, 1] defined
by R(Txn) = rn, where rn is the n-th Rademacher function. The
injectivity of L∞[0, 1] permits us to have a bounded extension R̃ of R
to all of Y . Notice that the operator L : L∞[0, 1] → c0 given by Lf =
(
∫ 1

0
f(t)rn(t) dt) is a bounded linear operator. Since (LR̃T )∗ : `1 → X∗

is weak*-to-weak* continuous and (e∗n) is a weak* null sequence in `1,
it follows that ((LR̃T )∗e∗n) is a weak* null sequence in T ∗(BY ∗). Then
our supposition indicates that ((LR̃T )∗e∗n) is norm null. However,
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〈(LR̃T )∗e∗n, xn〉 = 〈e∗n, LR̃Txn〉 = 〈e∗n, en〉 = 1 for each n. This is a
contradiction.

�

In the theorem stated below we deal with a result due to W. Johnson
and H. Rosenthal [10] in the framework of operators. For this purpose
the next elementary fact is required.

Lemma 1. Let (x∗i ) be a sequence in X∗ equivalent to the usual `1-
basis. Then given ε > 0, n ∈ N, and a subsequence (x∗ij

) of (x∗i ) there is

a finite set of vectors x1, · · · , xm from CBX such that {(〈x∗ij
, xp〉)n

j=1 :
1 ≤ p ≤ m} forms an ε-net for B`n

∞
.

Proof. Given ε > 0, we choose α1 = (α1i)∞i=1, · · · , αm = (αmi)∞i=1

in B`∞ such that {(αpj)n
j=1 : 1 ≤ p ≤ m} is an ε/2-net for B`n

∞
. For

simplicity, we relabel (x∗ij
) by (x∗j ). Pick z1, · · · , zm in CBX∗∗ so that

〈zp, x
∗
j 〉 = αpj for 1 ≤ p ≤ m, j ∈ N. Since CBX is weak* dense

in CBX∗∗ , for each 1 ≤ p ≤ m, there is an xp ∈ CBX such that
|〈x∗j , xp〉 − 〈zp, x

∗
j 〉| < ε/2 for 1 ≤ j ≤ n. Therefore {(〈x∗j , xp〉)n

j=1 : 1 ≤
p ≤ m} is an ε-net for B`n

∞
. �

Theorem 5. The following statements about an operator T : X →
Y are equivalent.

(i) T ∗ : Y ∗ → X∗ is not weakly precompact.
(ii) There is a subspace E of X and an operator S : Y → `∞ such

that ST (E) = c0.

Proof. (i) ⇒ (ii). The hypothesis (i) guarantees the existence of a
sequence (y∗n) in BY ∗ such that (T ∗y∗n) is a copy of the usual `1-basis.
Let A denote the collection of all such sequences. We deal first with
the case where A has an element that is T -weak* null. Let (y∗n) be a
T -weak* null sequence in BY ∗ such that (T ∗y∗n) is a copy of the usual
`1-basis. We can assume ‖T ∗y∗n‖ = 1 for each n. Let n1 = 1. Choose
x1 ∈ CBX so that 〈T ∗y∗n1

, x1〉 = 1. Using the fact that (〈T ∗y∗n, x〉)
is null for each x ∈ X, pick n2 > n1 so that |〈T ∗y∗n, x1〉| < 1/2 for
all n ≥ n2. Lemma 1 provides us with a finite set {xi

2 : 1 ≤ i ≤
m2} of vectors from CBX such that {(〈T ∗y∗nj

, xi
2〉)2j=1 : 1 ≤ i ≤ m2}

forms a 1
4 -net for B`2∞

. By another use of the fact that (〈T ∗y∗n, x〉)
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is null for each x ∈ X, we choose n3 > n2 so that n ≥ n3 implies
|〈T ∗y∗n, xi

2〉| < 1
4 for 1 ≤ i ≤ m2. It takes another appeal to lemma

1 to obtain a finite set {xi
3 : 1 ≤ i ≤ m3} of vectors from CBX for

which {(〈T ∗y∗nj
, xi

3〉)3j=1 : 1 ≤ i ≤ m3} forms a ( 1
2 )3-net for B`3∞

. Our
procedure is clear. We extract an increasing sequence (nj) of positive
integers and a set {xi

p : 1 ≤ i ≤ mp, p = 2, 3, · · · } of vectors from CBX

such that
(a) {(〈T ∗y∗nj

, xi
p〉)

p
j=1 : 1 ≤ i ≤ mp} forms a (1

2 )p-net for B`p
∞ .

(b) n ≥ np+1 implies |〈T ∗y∗n, xi
p〉| < ( 1

2 )p for 1 ≤ i ≤ mp.
Now we define a linear map U : X → c0 by Ux = (〈T ∗y∗nj

, x〉)j

for all x ∈ X. Plainly ‖U‖ ≤ 1. Let us take α = (αn) ∈ BC0 .
Given ε > 0, select N ∈ N so that ( 1

2 )N < ε/2 and |αn| < ε/2 for
all n ≥ N . Since (αj)N

j=1 ∈ B`N
∞

, it follows from property (a) that
‖(αj − 〈T ∗y∗nj

, xk
N 〉)N

j=1‖ < ( 1
2 )N < ε/2 for some xk

N ∈ CBX with 1 ≤
k ≤ mN . If j > N then nj ≥ nN+1 and thus |〈T ∗y∗nj

, xk
N 〉| < ( 1

2 )N <

ε/2 in view of property (b). Consequently |〈T ∗y∗nj
, xk

N 〉 − αj | < ε for
all j, that is ‖Uxk

N − α‖ < ε. This forces that Bc0 ⊂ U(CBX) and so
U is a surjection. If S : Y → `∞ is defined by Sy = (〈y∗nj

, y〉) for all
y ∈ Y then ST = U and ST (X) = c0.

Now we treat the case where A has no element that is T -weak* null.
We invoke proposition 2 to infer that T is not weakly precompact. We
find a sequence (Txn) in T (BX) that is a copy of the usual `1-basis.
Let L : [Txn] → c0 be a bounded linear surjection. The injectivity
of `∞ makes an extension L̃ : Y → `∞ of L : [Txn] → `∞. Putting
E = [xn] yields that L̃T (E) = c0.
(ii)⇒ (i). Suppose that there exists a subspace E of X and an operator
S : Y → `∞ such that ST (E) = c0. Consider the natural inclusion
map I : E → X. Then (STI)∗ : `1 → E∗ is an isomorphism and hence
I∗T ∗S∗ = (STI)∗ is not weakly precompact. Thus T ∗ is not weakly
precompact because the class of all weakly precompact operators is an
operator ideal. �

The preceding theorem permits us to find a special Banach space
with the property that for every operator with dimain such a space the
converse of theorem 1 is true.

Corollary. Suppose X is a Grothendieck space. If an operator
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T : X → Y is weakly precompact then its adjoint T ∗ : Y ∗ → X∗ is
weakly precompact.

Proof. Suppose that T ∗ is not weakly precompact. Since T is weakly
precompact, we know from the proof of theorem 5 that there exists an
operator S : Y → `∞ such that ST (X) = c0. Then (ST )∗ : `1 → X∗ is
an isomorphism. Observe that (e∗n) is a weak* null sequence in `1 and
so ((ST )∗e∗n) is a weak* null sequence in X∗. Since X is a Grothendieck
space, it follows that ((ST )∗e∗n) is a weakly null sequence in X∗ and
hence (e∗n) is a weakly null sequence in `1. This contradiction completes
the proof. �

We pass to the study of operators T : C(K, X) → Y with weakly
precompact adjoints. In the next theorem we describe property of
the representing measure for an operator T : C(K, X) → Y having a
weakly precompact adjoint. To this end, the following auxiliary result
is needed.

Lemma 2. The set U = {T ∈ B |T ∗ is weakly precompact} is a
closed separably determined operator ideal.

Proof. First we claim that U is closed. Assume to the contrary
that there is a sequence (Tn) in U(X, Y ) converging to T ∈ B(X, Y )
with respect to the operator norm but T /∈ U(X, Y ). Then there is a
subspace V of Y ∗ isomorphic to `1 such that the restriction of T ∗ to V
is an isomorphism. Given ε > 0, we choose a natural number N with
‖T ∗ − T ∗N‖ < ε. Hence the restriction of T ∗N to V is an isomorphism,
in other words T ∗N is not weakly precompact, which is a contradiction.

Next we assert that U is separably determined. If T ∈ U(X, Y ) and
if E is any separable subspace of X, then certainly T |E ∈ U(E, Y ).
Suppose now that T : X → Y is such that T |E ∈ U(E, Y ) for every
separable subspace E of X. Suppose T /∈ U(X, Y ). Theorem 5 guaran-
tees the existence of a subspace M of X and an operator S : Y → `∞
for which ST (M) = c0. Since we can find a separable subspace E of
M such that ST (E) = ST |E(E) = c0, another appeal to theorem 5
establishes that T |E∗ is not weakly precompact. This contradiction
proves that T ∈ U(X, Y ). �
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Theorem 6. Let T : C(K, X) → Y be an operator with rep-
resenting measure m. If T has a weakly precompact adjoint then
m(A)∗ : Y ∗ → X∗ is weakly precompact for each A ∈

∑
.

Proof. Let T̂ denote a natural extension of T to UX(
∑

). Take any
separable subspace H of UX(

∑
). Let {fi : i ∈ N} be a dense subset

of H. Lusin’s theorem [6] assures us that for every n ∈ N, there exists
a compact subset Kn of K with m̃(K − Kn) < 1/n such that the
restriction of fi to Kn is continuous for all i. Set Hn = [fi|Kn ], n ∈ N.
First, look at the map Rn : H → Hn defined by Rnf = f |Kn , f ∈ H.
Consider the map Ln : Kn → B(Hn, X) given by Ln(t) = δt, t ∈
Kn, where δt(f) = f(t) for f ∈ Hn. Then Ln is continuous when
B(Hn, X) has the pointwise convergence topology and Ln(Kn) ⊆ {T ∈
B(Hn, X) : ‖T‖ ≤ 1} = M . Since Hn is separable and complete, it
follows that M is a complete convex metrizable subset of B(Hn, X) and
hence Ln has a continuous extension L̃n : K → M . Now define a map
Sn : Hn → C(K, X) via Sn(f)(t) = L̃n(t)(f), f ∈ Hn, t ∈ K. For
f ∈ Hn and t ∈ Kn, we have Sn(f)(t) = Ln(t)(f) = f(t). Evidently
Sn is isometric. If ‖

∑p
i=1 αifi‖ ≤ 1 then we have

‖TSnRn(
p∑

i=1

αifi)− T̂ (
p∑

i=1

αifi)‖

= ‖
∫

K

Sn(
p∑

i=1

αifi|Kn
) dm−

∫
K

(
p∑

i=1

αifi) dm‖

= ‖
∫

Kn

Sn(
p∑

i=1

αifi|Kn
) dm +

∫
K−Kn

Sn(
p∑

i=1

αifi|Kn
) dm

−
∫

Kn

(
p∑

i=1

αifi) dm−
∫

K−Kn

(
p∑

i=1

αifi) dm‖

= ‖
∫

K−Kn

Sn(
p∑

i=1

αifi|Kn
) dm−

∫
K−Kn

(
p∑

i=1

αifi) dm‖ ≤ 2/n.

The denseness of {fi : i ∈ N} in H implies that limn→∞ ‖T̂ |H −
TSnRn‖ = 0. If we set U = {T ∈ B |T ∗ is weakly precompact } then
T ∈ U(C(K, X), Y ) and so TSnRn ∈ U(H,Y ). We know from lemma
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2 that U(H,Y ) is closed and thus T̂ |H ∈ U(H,Y ). Again lemma 2 tells
us that U is separably determined and so T̂ ∈ U(UX(

∑
), Y ). Since

T ∗ is weakly precompact, we use theorem 2 to derive that T is un-
conditionally converging. Therefore m is strongly bounded with the
help of Swartz’s result [15] and hence m :

∑
→ B(X, Y ). Select any

∅ 6= A ∈
∑

. Let φ : X → UX(
∑

) be an isometric embedding which
is given by φ(x) = χA x, x ∈ X. It is obvious that m(A)x = T̂ φ(x)
for x ∈ X. Accordingly we end up with m(A) ∈ U(X, Y ). This means
that m(A)∗ : Y ∗ → X∗ is weakly precompact. �

We may conjecture that the converse of the preceding theorem is
true, but we do not know the answer. The following proposition
is an intrinsic characterization of a strongly bounded operator T :
C(K, X) → Y .

Proposition 3. The following statements about an operator T :
C(K, X) → Y are equivalent.

(i) T is strongly bounded.
(ii) The sequence (Tfn) converges to 0 whenever (fn)is a bounded

sequence in C(K, X) such that (fn(t)) converges to zero for
every t ∈ K.

Proof. (i) ⇒ (ii). The hypothesis (i) indicates that the representing
measure m for T is strongly bounded. Thus for each decreasing se-
quence (An) of Borel sets satisfying limn An = ∅, we have limn m̃(An) =
0. Then {|mz| : z ∈ BY ∗} is uniformly countably additive. As a re-
sult {|mz| : z ∈ BY ∗} is weakly conditionally compact and there ex-
ists a control measure λ for m̃. Let (fn) be a bounded sequence in
C(K, X) such that (fn(t)) converges to zero for every t ∈ K. Suppose
supn ‖fn‖ ≤ σ. We take account of Egoroff’s theorem [6] to infer that
(fn) converges to zero uniformly λ-a.e., hence m̃–a.e.. This means that
for each ε > 0 there is a set A ∈

∑
so that m̃(A) < ε/σ and (fn) con-

verges to zero uniformly on K − A. We choose a natural number N
such that ‖fn(t)‖ < ε/(m̃(K) + 1) for all n ≥ N and t ∈ K −A. Thus
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we have

‖T (fn)‖ = ‖
∫

K

fn dm‖ ≤ ‖
∫

A

fn dm‖+ ‖
∫

K−A

fn dm‖

≤ σ m̃(A) +
ε · m̃(K −A)

m̃(K) + 1
< 2ε for all n ≥ N,

that is (T (fn)) converges to zero.
(ii) ⇒ (i). For this step, we will take the contrapositive route. As-
sume that (i) is false. Then the representing measure m for T is
not strongly bounded. Then there exists a δ > 0 and a sequence
(An) of disjoint Borel sets such that m̃(An) > δ for each n. Since
m̃(An) = sup {|mz|(An) : z ∈ BY ∗}, we can pick a sequence in
(zn) in BY ∗ with |mzn

|(An) > δ for each n. Hence {|mzn
|} is not

uniformly countably additive and so {|mzn
|} is not weakly condition-

ally compact. Thanks to Grothendieck’s theorem [7], we may assume
that there exists an ε > 0 and a sequence (On) of disjoint open sub-
sets of K so that |mzn |(On) > ε for each n. The regularity prop-
erty of m enables us to select a sequence (fn) in C(K, X) such that
‖fn‖ ≤ 1, support(fn) ⊂ On and ‖Tfn‖ > ε for each n. Then for
each t ∈ K, (fn(t)) converges to zero but a sequence (Tfn) will find
it impossible to converge to zero. �

Next we give useful descriptions of operators T : C(K, X) → Y
having weakly precompact adjoints under some restriction to the un-
derlying Banach space X.

Theorem 7. Suppose X∗ does not contain a copy of `1. Then
the following statements about an operator T : C(K, X) → Y are
equivalent.

(i) T ∗ is weakly precompact.
(ii) T is unconditionally converging.
(iii) T is strongly bounded.

Proof. (i) ⇒ (ii) follows from theorem 2.
(ii) ⇒ (iii) follows from Swartz’s result [15].
(iii) ⇒ (i). Let m be the representing measure for T . Assume that
T ∗ is not weakly precompact. We find a sequence (y∗n) in BY ∗ such
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that (T ∗y∗n) = (my∗n
) is a copy of the usual `1-basis. We can assume

‖my∗n‖ ≤ 1 for each n. Relabel my∗n by mn, n = 1, 2, · · · . The hypoth-
esis (iii) signifies that m is strongly bounded and so {|mn|} is uniformly
countably additive. Let ν′ =

∑∞
n=1 |mn|/2n and let (K,

∑
0, ν) denote

the completion of (K,
∑

, ν′). Then there exists a constant C such that
|mn| ≤ Cν for each n. Let ρ be a lifting of L∞(ν). According to
theorem 5 of [6], for each n there exists a function gn : K → X∗ such
that
(a) ‖gn(·)‖ is ν-integrable,
(b) |mn|(A) =

∫
A
‖gn(·)‖ dν for A ∈

∑
0,

(c)
∫

f dmn =
∫
〈gn(t), f(t)〉 dν(t) for f ∈ L1(|mn|, X),

(d) For each x ∈ X, 〈gn, x〉 ∈ L∞(ν) and ρ〈gn, x〉 = 〈gn, x〉.
Take any finite sequence (an)p

n=1 of real numbers. Suppose α > 0 is
chosen so that ‖

∑p
n=1 anmn‖ > α

∑p
n=1 |an|. Let 0 < ε < α. Then

we can find δ > 0 so that if ν(A) < δ then |mn|(A) < ε for all n. Put
An = {t : ‖gn(t)‖ > 1/δ}. As ‖mn‖ = |mn|(K) =

∫
K
‖gn(·)‖ dν ≤ 1,

we have ν(An) < δ and thus |mn|(An) < ε for all n. For each B ∈
∑

0

and n, by setting m̂n(B) = mn(B −An) we get

|m̂n|(B) =
∫

B−An

‖gn(·)‖ dν ≤ 1/δ · ν(B −An) ≤ 1/δ · ν(B).

It takes another appeal to theorem 5 of [6] to yield that for each n,
there exists a function ĝn : K → X∗ having the following properties :
(a) ‖ĝn(·)‖ is ν-integrable,
(b) |m̂n|(A) =

∫
A
‖ĝn(·)‖ dν for A ∈

∑
0,

(c)
∫

f dm̂n =
∫
〈ĝn(t), f(t)〉 dν(t) for f ∈ L1(|m̂n|, X),

(d) For each x ∈ X, 〈ĝn, x〉 ∈ L∞(ν) and ρ〈ĝn, x〉 = 〈ĝn, x〉.
Define µ =

∑p
n=1 anm̂n. We can call on theorem 5 of [6] again to

derive that there exists a function g : K → X∗ such that
(a) ‖g(·)‖ is ν-integrable,
(b) |µ|(A) =

∫
A
‖g(·)‖ dν for A ∈

∑
0,

(c)
∫

f dµ =
∫
〈g(t), f(t)〉 dν(t) for f ∈ L1(|µ|, X),

(d) For each x ∈ X, 〈g, x〉 ∈ L∞(ν) and ρ〈g, x〉 = 〈g, x〉.
If h =

∑p
n=1 anĝn then for each A ∈

∑
0 and x ∈ X, we have∫

A

〈h(t), x〉 dν =
p∑

n=1

an〈m̂n(A), x〉 = 〈µ(A), x〉 =
∫

A

〈g(t), x〉 dν
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and so 〈g(·), x〉 = 〈h(·), x〉 ν-a.e.. Notice that for each x ∈ X, ρ〈h, x〉 =∑p
n=1 an ρ〈ĝn, x〉 =

∑p
n=1 an〈ĝn, x〉 = 〈h, x〉. From the definition of a

lifting ρ, it follows that for each x ∈ X, 〈g(·), x〉 = 〈h(·), x〉 every-
where. Consequently

‖
p∑

n=1

anm̂n‖ = ‖µ‖ = |µ|(K) =
∫

K

‖g(·)‖ dν =
∫

K

‖
p∑

n=1

anĝn(·)‖ dν.

Now we consider the space F of all finitely non-zero sequences of
real numbers and denote by en the n-th unit vector. For t ∈ K, define
| · |t on F by |(an)|t = ‖

∑
anĝn(t)‖, (an) ∈ F . If (an) ∈ F then we

get∫
K

|(an)|t dν = ‖
∑

anm̂n‖ ≥ ‖
∑

anmn‖ −
∑

|an| · ‖mn − m̂n‖

= ‖
∑

anmn‖ −
∑

|an| · |mn − m̂n|(K)

= ‖
∑

anmn‖ −
∑

|an| · |mn|(An)

> α
∑

|an| − ε
∑

|an| = (α− ε)
∑

|an|.

Define ||| · ||| on F by |||(an)||| =
∫

K
|(an)|t dν, (an) ∈ F . Then we

have

(α− ε)
∑

|an| ≤ |||
∑

anen||| = ‖
∑

anm̂n‖

≤
∑

|an| · |m̂n|(K) ≤ 1/δ · ν(K) ·
∑

|an|.

This gives that (en) is a copy of the usual `1-basis for ||| · |||. Then
Bourgain’s theorem [4] steps in to ensure that there exist t ∈ K and
a subsequence (enk

) of (en) which is a copy of the usual `1-basis for
| · |t. That is, there exists η > 0 such that η

∑
|ak| ≤ |

∑
akenk

|t =
‖

∑
akĝnk

(t)‖ for all finitely non-zero sequences (ak) of real numbers.
This forces that (ĝnk

(t)) is a sequence in X∗ that is a copy of the usual
`1-basis. We reach a contradiction. �

We provide a certain kind of surjective operators defined on the
space of continuous X-valued functions in order to find conditions
which imply that X has the weak* Radon-Nikodym property.
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Proposition 4. If L : X → Y is an operator and L(X) contains
a subspace F of Y isomorphic to c0, then there is a bounded linear
surjection T : C({−1, 1}N, X) → F with representing measure m so
that m is strongly bounded and m(A) : X → F is compact for each
A ∈

∑
.

Proof. Let (yn) be an unconditional basis for F which is equivalent
to the usual c0-basis (en), and suppose (y∗n) is the sequence of coefficient
functionals. Let z∗n be a Hahn-Banach extension of y∗n to all of Y . For
t = (tn) ∈ {−1, 1}N = 4, we define the map St : F → F by St(y) =∑

tn z∗n(y) yn, y ∈ F . Evidently St is linear and bounded. Define
on Y an equivalent norm |||y||| = sup {

∑
|z∗n(y)y∗(yn)| : y∗ ∈ BF∗}.

The uniform boundedness principle implies that sup{‖St‖ : t ∈ 4} <
∞. We use the letter µ for the canonical probability measure (Haar
measure) ( 1

2δ−1 + 1
2δ1)⊗N defined on 4. Let (rn) be the sequence of

Rademacher functions on 4. Consider the map m :
∑

→ B(X, F )
given by m(A)x =

∑∞
n=1(

∫
A

rn dµ) z∗n(Lx) yn, A ∈
∑

, x ∈ X. Then
we have ‖m(A)x‖ ≤ |||Lx||| ·µ(A). Accordingly m is dominated and so
m is strongly bounded. For each A ∈

∑
, since limn→∞

∫
A

rn dµ = 0,
it follows that m(A) is the limit in operator norm of a sequence of
finite rank operators. This leads us to have that m(A) is compact. Let
T : C(4, X) → F be the operator defined by T (f) =

∫
4 f dm, f ∈

C(4, X). Now pick τ > 0 for which {St(BF ) : t ∈ 4} ⊆ L(τBX).
Let us take any y ∈ BF . Given ε > 0 we choose a natural number N
with |z∗n(y)| < ε for all n > N . By DNi, 1 ≤ i ≤ 2N , we mean the
dyadic partition at the N -th stage. For ti ∈ DNi, 1 ≤ i ≤ 2N , there
exists xi ∈ τBX so that Stiy = Lxi. By letting f =

∑2N

i=1 χDNi
xi ∈

τBC(4,X), we get

T (f) =
2N∑
i=1

m(DNi)xi =
2N∑
i=1

∞∑
n=1

(
∫

DNi

rn dµ) z∗n(Stiy) yn.

Observe that if n > N then
∫

DNi
rn dµ = 0 for 1 ≤ i ≤ 2N , and if

1 ≤ n ≤ N then (
∫

DNi
rn dµ) z∗n(Stiy) yn = 1/2N · z∗n(y) yn. Therefore

we have T (f) =
∑N

n=1 z∗n(y) yn and ‖y−Tf‖ = ‖
∑∞

n=N+1 z∗n(y) yn‖ <

α ‖
∑∞

n=N+1 z∗n(y) en‖ < α ε for some constant α > 0. This yields that
BF ⊆ T (τBC(4,X)) and hence T is a surjection. �
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Having this preliminary result we draw the following theorem.

Theorem 8. Suppose that the operator T : C(K, X) → Y has a
weakly precompact adjoint whenever the representing measure m for
T is strongly bounded and m(A) : X → Y is compact for each A ∈

∑
.

Then X has the weak* Radon-Nikodym property.

Proof. Assume that the assertion fails. Then X∗∗ does not have the
weak Radon-Nikodym property. By virtue of Janicka’s theorem [9], X∗

contains a copy of `1. Then either X contains a copy of `1 or it does
not. If not, then we use a result due to J. Hagler and W. Johnson [8] to
see that there exists a weak* null sequence (x∗n) in X∗ equivalent to the
usual `1-basis. we can assume ‖x∗n‖ = 1 for each n. Proceeding in the
same way as in the proof of theorem 5, we get an increasing sequence
(nj) of positive integers and a set {xi

p : 1 ≤ i ≤ mp, p = 2, 3, · · · } of
vectors from CBX such that
(a) {(〈x∗nj

, xi
p〉)

p
j=1 : 1 ≤ i ≤ mp} forms a (1

2 )p-net for B`p
∞ ,

(b) n ≥ np+1 implies |〈x∗n, xi
p〉| < ( 1

2 )p for 1 ≤ i ≤ mp.
If we define a linear map S : X → c0 by Sx = (〈x∗nj

, x〉)j for all x ∈ X,
then ‖S‖ ≤ 1 and S(X) = c0.

Next consider the case in which X contains a copy of `1. Let L :
`1 → c0 be any bounded linear surjection. The injectivity of `∞ makes
an extension L̃ : X → `∞ of L : `1 → `∞ such that L̃(`1) = c0 ⊆ L̃(X).

Now we apply proposition 4 to derive that there exists a bounded
linear surjection T : C({−1, 1}N, X) → c0 with representing measure
m so that m is strongly bounded and m(A) : X → c0 is compact for
each A ∈

∑
. As a result T ∗ is an isomorphism on `1, i.e., T ∗ is not

weakly precompact. This contradiction completes the proof. �
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du type C(K), Canad. J. Math. 5 (1953), 127–173.

8. J. Hagler and W. Johnson, On Banach spaces whose dual balls are not weak*

sequentially compact, Israel J. Math. 28 (1977), 325–330.
9. L. Janicka, Some measure-theoretic characterizations of Banach spaces not

containing `1, Bull. Acad. Polon. Sci. 27 (1979), 561–565.
10. W. Johnson and H. Rosenthal, On w*-basic sequences and their applications

to the study of Banach spaces, Studia Math. 43 (1972), 77–92.

11. K. Musial, Martingales of Pettis integrable functions, Proc. Conf. Measure
Theory, Oberwolfach 1979, Lecture Notes in Math. 794, Springer-Verlag, 1980,

pp. 324–339.

12. A. Pelczynski, On Banach spaces containing L1(µ), Studia Math. 30 (1968),
231–246.

13. L. Riddle, E. Saab and J.J. Uhl, Jr., Sets with the weak Radon-Nikodym prop-

erty in dual Banach spaces, Indiana Univ. Math. J. 32 (1983), 527–541.
14. H. Rosenthal, A characterization of Banach spaces containing `1, Proc. Nat.

Acad. Sci. USA 71 (1974), 2411–2413.

15. C. Swartz, Unconditionally converging operators on the space of continuous
functions, Rev. Roum. Math. Pures et Appl. 17 (1972), 1695–1702.

16. M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. No.
307, 1984.

Department of Mathematics
Dongguk University
Seoul 100-715, KOREA
E-mail : hsong@dongguk.edu


