ON THE INTERMEDIATE DIFFERENTIABILITY OF LIPSCHITZ MAPS BETWEEN BANACH SPACES

  • Lee, Choon-Ho (Department of Mathematics and Institute of Basic Sciences, Hoseo University)
  • Published : 2009.01.31

Abstract

In this paper we introduce the intermediate differential of a Lipschitz map from a Banach space to another Banach space and prove that every locally Lipschitz function f defined on an open subset ${\Omega}$ of a superreflexive real Banach space X to a finite dimensional Banach space Y is uniformly intermediate differentiable at every point ${\Omega}/A$, where A is a ${\sigma}$-lower porous set.

Keywords

References

  1. S. Bates,W. B. Johnson, J. Lindenstrauss,D. Preiss and G. Schechtman,Affine Approximation of Lipschitz Functions and Nonlinear Quotients, GAFA, Geom. Funct. Anal. 9(1999), 1092-1127 https://doi.org/10.1007/s000390050108
  2. M. Fabian and D. Preiss, On Intermediate Differentiability of Lipschitz functions on Certain Banach spaces, Proc. Amer. Math. Soc. 113(1991), 733-740
  3. J. Giles and S. Schiffer, Generalizing generic differentiability properties from convex to locally Lipschitz functions, J. Math. Anal. Appl. 188(1994), 833–854 https://doi.org/10.1006/jmaa.1994.1466
  4. J. Lindenstrauss and D. Priess, On Fr´echet Differentiability of Lipschitz maps betweeen Banach spaces, Ann. of Math. 157(2003), 257–288 https://doi.org/10.4007/annals.2003.157.257
  5. L. Zajicek, A note on intermediate differentiability of Lipschitz functions, Comment. Math.Univ. Carolinae 40(1999)795–799
  6. L. Zajicek, On $\sigma$- porous sets in Abstract spaces, Abst. Appl. Analysis 2005(2005), 509–534